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Single-trial variability in early visual neuromagnetic responses:
an explorative study based on the regional activation
contributing to the N70m peak
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Abstract

Cortical activity evoked by repeated identical sensory stimulation is extremely variable. The source of this variability is often assigned
to “random ongoing background activity” which is considered to be irrelevant to the processing of the stimuli and can therefore be
eliminated by ensemble averaging. In this work, we studied the single-trial variability in neuromagnetic responses elicited by circular
checkerboard pattern stimuli with radii of 1.8°, 3.7°, and 4.5°. For most of the MEG sensors over the occipital areas, the averaged signal
showed a clear early (N70m) response following the stimulus onset and this response was modulated by the checkerboard size. A data-drive
spatial filter was used to extract one of the many possible composite time courses of single-trial activity corresponding to the complex of
N70m generators. Pattern analysis principles were then employed to analyze, classify, and handle the extracted temporal patterns. W
explored whether these patterns correspond to distinct response modes, which could characterize the evoked response better than t
averaged signal and over an extended range of latencies around N70m. A novel scheme for detecting and organizing the structure i
single-trial recordings was utilized. This served as a basis for comparisons between runs with different checkerboard sizes and provided
causal interpretation of variability in terms of regional dynamics, including the relatively weak activation in primary visual cortex. At the
level of single trial activity, the polymorphic response to a simple stimulus is generated by a coupling of polymodal areas and cooperative
activity in striate and extrastriate areas. Our results suggest a state-dependent response with a wide range of characteristic time scales a
indicate the ongoing activity as a marker of the responsiveness state.
© 2003 Elsevier Inc. All rights reserved.
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Introduction eli et al., 1996), BOLD-fMRI (Duann et al., 2002), electro-
encephalography (EEG) (Mast and Victor., 1991; Brand,
The single trial variability of sensory evoked responses 1997; Jung et al., 2001; Lutz et al., 2002), and magnetoen-
in cortex has been the subject of many studies based oncephalography (MEG) (Liu and loannides, 1996; Liu et al.,
different sensory modalities and various neurophysiological 1998; loannides et al., 1998). The major issue in all these
or neuroimaging techniques including intracellular record- studies is the validity of the “signal plus noise” model, i.e.,
ings (Azouz and Gray, 1999), single-unit recordings (Reich whether a relative stereotyped evoked response is linearly
et al., 1997), recording of local field potentials (Kisley and superimposed on the ongoing brain activity after every
Gerstein, 1999; Truccolo et al., 2002), optical imaging (Ari- stimulus presentation, a prerequisite for the validity of en-
semble averaging. Experimental evidence supporting aver-
* Corresponding author. Laboratory for Human Brain Dynamics aging as a_respc_)nse recovery technique ?an be Clalm-ed by
RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako-shi,’ many studies with E_EG and MEG Sho""'”g reproduuple
Saitama 351-0198, Japan. Fax81-48-467-9731. average responses in somatosensory, auditory, and visual
E-mail address: ioannides@postman.riken.go.jp (A.A. loannides). cortices after averaging a large number of trials in single or

1053-8119/$ — see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S1053-8119(03)00367-7



766 N.A. Laskaris et al. / Neurolmage 20 (2003) 765-783

multiple recordings. These studies have shown that thereis
atime-locked response that can be recovered by averaging.
However, the comparison of the averaged signal with indi-
vidua single trial responses suggests that the average is not
areflection of a unitary sequence of events but a mixture of
different histories generated via a nonlinear coupling of
stimulus evoked and ongoing activity. The motivations for
the present study were the exploitation of the rich temporal
information of MEG recordings for a detailed characteriza-
tion of single-tria variability based on signal properties and
the elucidation of the dominant sources contributing to this
variability. We used simple visual stimuli and subjects
whom we have previously studied with MEG and fMRI in
order to define their early responses in the primary visual
cortex (V1). Thisenabled usto scrutinize the relationship of
the activity in the first cortical area excited by the stimulus
with the response variability seen in the multichannel MEG
signal.

The neural generators of early visual responses to pat-
tern-onset stimulation in humans are still under debate and
two recent excellent works can be used to illustrate the
diversity of opinions that now prevail. In the first study by
Russo et al. (2001), dipole modeling of the grand average
(average across subjects) EEG signals was used to identify
the sources with and without constraints from fMRI. This
procedure led to the localization of the C1 source (~55 ms)
within the calcarine fissure for both upper and lower field
stimuli, without the need for position constraints. For stim-
uli in al quadrants, the next positive deflections of the grand
average EEG signal were early (80-110 ms) and late (110—
140 ms) P1 phases that localized to the lateral extrastriate
cortex (BA18) and the ventral occipitotemporal cortex, re-
spectively. In the second study by Foxe and Simpson
(2002), the average high-density EEG signal wasfirst trans-
formed into a scalp current source map on the standard
10-20 system by Laplace transformation (Hjorth, 1975).
The results of this study were not in agreement with the
notion that the initial ERP component C1 (peaking between
~60 and 90 ms), represents V1 activation and that the
ensuing P1 component (peaking between ~100 and 140 ms)
represents subsequent extrastriate activation, suggesting in-
stead a significantly condensed scenario for activation in the
visual system, with even frontal areas showing activation by
85 ms. This fast scenario is consistent with data obtained
from monkey intracrania recordings (Raiguel et al., 1989)
and human ERP studies (Thorpe et a., 1996).

Three recent MEG studies have also addressed the ques-
tion of early visua processing using the averaged MEG
signa dlicited by stimuli confined to quadrants or parts of
quadrants of the visua field. In a pattern reversal stimula-
tion paradigm (Vanni et a., 2001), the source of early MEG
response (5570 ms after stimulus onset) was localized first
in primary visual areas, 3-4 ms later in the anteromedial
part of the cuneus, and finaly in many other areas. In
another MEG study (Tzelepi et al., 2001), generatorsin both
striate and extrastriate cortex were found to contribute to the

formation of the early (N70m) peak following stimulation
by sinusoidal grating pattern onset. Highly reproducible
focal activity in V1/V2 was accompanied by a concurrent
strong but labile activity in V5 and the human homol ogue of
V6. In an attempt to precisely define the very early activity
evoked by avisual stimulus, the MEG and fMRI localiza-
tions were compared for pattern onset stimuli confined to
part of the lower field quadrant, selected so that the esti-
mated V1 activation was well separated from the V2 rep-
resentation of the same stimulus (Moradi et a., 2003). The
study showed excellent agreement between tomographic
estimates of activity (3-5 mm), for the very first entry to the
visual system, typically 40 ms after the stimulus onset.

In the current study, we used two subjects from the
above-mentioned fMRI and MEG study and the same stim-
uli in anew MEG experiment designed to study the source
of response variability and hence to recognize the contribu-
tion of each of the magjor sources to this variability at the
level of individual responses. The main objective of our
work was to identify and characterize possible systematic
processes governing the response generation, which are
hidden behind the seemingly random fluctuations dominat-
ing the single-trial multichannel signal. To achieve this goal
we analyzed the recorded data following three sequentially
linked stages, starting with the MEG signa and continuing
with the corresponding estimates of brain activity obtained
from the tomographic analysis of this signal. First, we used
adata-driven dimensionality reduction technique to derive a
temporal signature corresponding to the activity of N70m
generators, for each single-trial (ST). The extracted ST time
courses were then handled using pattern analysis principles.
The backbone of the overall methodology was the efficient
design and application of an encoder that could summarize
the variability of N70m responses. A vector quantization
(VQ) scheme partitioned the data into groups and represen-
tative prototypes were computed. Based on these prototypes
and by means of signal-processing and graph-theoretic tech-
niques, the response variability was presented in an orga-
nized and intelligible way that provided insights into the
mechanisms controlling it. Next, we used the estimates of
brain activity to identify the consistent focal generators
contributing to the prototypes formed in the first stage.
Finally, the single-trial tomographic estimates were used to
quantify the covariation of the activity in the primary visual
area with the dominant signal pattern.

Materials and methods
Subjects and stimuli

Two subjects (S1 and S2, ages 27 and 25) volunteered
for this study. Both of them had also participated in the
previous fMRI and MEG experiment to examine the tomo-
graphic localization of activity within human V1 using
whole-head MEG and 4-Telsa fMRI (Moradi et al., 2003).
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The new MEG experiment was dlightly modified. Identical
stimuli were delivered, but, with higher luminosity than in
the fMRI/MEG study in order to enhance the N70m re-
sponse. The only other difference between the two experi-
ments was the use of goggles at supine position in the first
experiment and the use of brighter screen presentation at
seated position in the new experiment. The procedure and
scientific background for the experiment were fully ex-
plained to the subjects and signed agreement for participa-
tion was obtained prior to the experiment. Stimuli consisted
of flickering (reversing) checkerboard patterns on a homog-
enous gray background: check size of 1°, 45° orientation,
and 8° from a fixation point (a small red cross at the center
of the screen) along the downward diagonal in one of the
lower visua quadrants. The quadrant (left for S1 and right
for S2) had been defined individually for each subject in the
previous fMRI/MEG study to enhance the separation be-
tween V1 and the other areas and hence make V1 locdiza-
tion as unambiguous as possible. We used three checker-
board sizes (radii of 1.8°, 3.7°, and 4.5°) in three separate
runs, which for ease of reference will be denoted hereafter
as rl18, r37, and r45, respectively. The reversa rate of the
checkerboard was 1.43 Hz (i.e., each of the complementary
patterns was presented for approximately 700 ms). The
contrast of the stimulus was 93% (black 3 cd/m?, white 85
cd/m?, gray 44 cd/m?). At a seated position, the subjects
viewed the stimuli back-projected on a screen 56 cm from
the subjects’ eyes by an LCD projector outside the shielded
room. A photodiode was attached to the screen to record the
exact onset time of each pattern reversal. A separate subject
baseline run served as control condition. This run had the
same duration as the active runs and the subjects were
scanned while fixating on the fixation point, but with no
stimulus delivered in any quadrant. The gray screen back-
ground and the light background in the room were the same
as in the active runs.

MEG signal recording and processing

The MEG signal was recorded with the 151-channel
whole-head Omega biomagnetometer (CTF Systems Inc.,
Vancouver, B.C., Canada) inside a magnetically shielded
room (NKK, Japan). Each MEG channdl is a first-order
axial gradiometer with two coils of 1 cm radius separated by
5 cm. Additional channels were used to monitor the sub-
jects' artifacts resulting from blinks and vertical eye move-
ments (EOG electrodes 1 cm above and below the left eye),
horizontal eye movements (EOG electrodes 1 cm lateral to
the left and right outer canthus of the eyes), and heart
function (ECG electrodes, left and right wrists, left and right
angles and lead V?2). Before the MEG experiment, three
head coils were attached to the subject’s scalp, close to the
nasion, and on the left and the right preauricular points.
Three coils monitored the head position during the experi-
ment for the definition of the coordinate system and the
coregistration of MEG data with subject’'s MRI. The sub-

jects sat in front of the centrally placed screen with the
MEG helmet completely covering the whole head. During
the MEG recording, the subjects were instructed to fixate on
the fixation point and to stay alert. Before and after each
recording run, the subject’s head position was monitored. If
the subject had moved excessively during a run (3 mm or
more), that run was repeated.

The MEG signal was recorded continuously for each run
with asampling rate of 625 Hz after low passfiltering at 200
Hz. Each run consisted of 240 trials of pattern reversal and
started with the presentation of the gray screen with the
fixation point for 30 s. Environmental noise was first elim-
inated by forming the third gradient of the magnetic field
off-line and the resulting data were further band-pass fil-
tered in the 1-120 Hz range with notch filters at 50 and 100
Hz. The interference from the cardiac activity was then
eliminated, utilizing the recorded ECG signals, via a noise
cancellation technique based on linear regression (CTF soft-
ware). Trials were extracted in the range from —100 to 200
ms relative to the onset of each pattern reversal. Trials with
blinks or eye movements (changes greater than 50 uV in the
EOG channels) were automatically removed. The exclusion
of artifact-contaminated trials was further accomplished
manually. On average, about 20% of the trials were re-
moved. The number of the remaining trials available for
single trial analysisis listed in Table 1. The procedure for
extracting and selecting trials from the control condition run
was the same as the procedure for the stimulation runs.

Virtual sensor transform

At the first stage, our analysis focused on a single time
course signal synthesized from the multichannel data, via
the virtual sensor (VS) transform, in a way that amplified
the contribution from the complex of generators, being
responsible for the dominant N70m response. Summarizing
this spatial filtering action, a detailed description of which
can be found elsewhere (Liu et a., 1998), we denote the ith
single-trial response (scalar) signal collected by the Ith
MEG sensor, with sampling frequency f, as

xHt), i=1,...,N;
t=..1-Tg, 2 -Tg...= —100: Ts 200 ms;

1 1
TR 625"
First the averaged response,

ﬂo=$§xmy|=L””mL (1)

was formed for the r45-run and the MEG sensors | (1)
showing the most prominent positive (negative) deflection
were identified and used to form the spatial filter
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Table 1
Distribution of N70m-segments in the different groups
N; Group order N nDist.
(P value) 1 2 3 4 5 6 7 8 9 10
S1
Control condition 18.4 59.9 42 51 24.6 13.8 4.6 4 2.8 0.8 176 0.161
rl8 13 51 31 8 33 251 5 7 5 41 182 0.178
0.04 9.e-07 0.03
r37 12 38 37 1417 29 15 4 1017 6 3 168 0.181
3e-11 3e-04
r45 10 21 20 261 35 241 121 121 81 101 178 0.152
0.04 1e-08 2e-04 <le-12 3e-06 5e-04 9e-06 7e-03 3e-11
S2
Control condiction 0.125 9.5 49,5 16.25 33.75 18 9.75 2.75 3.625 0.75 144 0.242
ri8 37 16 4] 30 45 21 19 8 1317 3 207 0.220
3.e-08 0.01 0.002
r37 1 281 49, 36 28 18 22 141 8 3 207 0.230
6e-11 0.01 0.03 0.002
r4s5 31 281 42 28 14 1 27 181 141 121 197 0195
5.e-09 6e-07 0.002 4.e-04 4.e-06 2.e-04 <le-12

Note. The groups with a significant increase (decrease) in their population, at P < 0.05, are denoted using upward (downward) arrows, while the exact P

value is tabulated.

xVS(t) =

all -

5 1 5
X0 -z 2X(), @
+=1 l-=1

where x' *(t) and X'~ (t) denote the signals from these sen-
sors which were included, as shown in Fig. 1, in the dom-
inant bipolar spatial pattern formed by the averaged mul-
tichannel signal in the early poststimulus period. The above
spatial operator was then applied to the single-trial data to
extract the signal x;(t), which for simplicity will be denoted
hereafter with the superscript VS omitted. The time course
defined by x;(t) was the signature of regional dynamics used
to characterize, at the level of individual responses and
under all the recording conditions, the behavior of the dom-
inant generators of N70m brain wave.

Measures of stimulus-induced changes

We used two simple descriptors to characterize the pro-
cess underlying the generation of the evoked response based
on a set of N single-trials x(t). The definition of these
descriptors was in full accordance with the pattern-analytic
approach we adopted in this study and motivated by previ-
ous work on single-trial analysis (Laskaris and loannides,
2001, 2002). The first descriptor is related to the concept of
amplitude-modulation of a signal, while the second one is
related to phase-modulation (Penny et al., 2002). Both de-

scriptors were employed via a sliding window of p samples
width. At every latency t, the single-trial segments

p
X(tp) = [K(t -

x(t+1.Ty, ...,

.Ts>, oL Xt = 1T, x(t),
xi(t + p%l.Ts)],

were extracted and used in the computation of the time-
varying energy (tv_Energy)

i=1,2,..,N

tv_Energy(t.p) = o _EHXi(t,p)H2 (©)

and in the computation of a factor expressing the intertrial
synchronization (ITS)

1 Xi(t, p)
TSP =N =1 212 ‘IIX(t o)l
X(t, p) |

4

N
The time course of these two descriptors can contribute to
the understanding of the averaged response formation by

Fig. 1. A data-driven approach is followed for both constructing the spatial filter that extracts the time course of the visua evoked response and selecting
the chain of samples that will be used to characterize the N70m brain wave. The data from the r45-run, where the stimulus shown in (a) was presented, are
averaged. The dominant response in the early poststimulus period is identified and the emerged bipolar pattern leads to the selection of channels participating
inthe Virtual Sensor transform (b). Using the averaged V S-based signal from this run, a N70m-related latency range is defined via thresholding at zero-level,

around the peak of the prominent deflection (c).

Fig. 2. Comparison of the averaged N70m response across the different recording conditions. The V S-based single-trials have been used to compute, for each
run separately: (a) the average time course of the evoked response, (b) an estimate of the response signal-energy time course, and (c) an estimate of the

intertrial synchronization time course.
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revealing the role of the stimulus-induced changes in the
ongoing activity. The former descriptor is associated with
amplitude dynamics and can be used to mark loosely phase-
locked increases or decreases in the strength of ongoing
oscillations. The latter one is associated with phase dynam-
ics and is closely related to both the phase-locking factor
(Tallon-Baudry et a., 1996) and the event-related intertrial
coherence (Makeig et a., 2002). In Eq.(4), a shape-dissim-
ilarity measure is employed for performing all the pairwise
comparisons between the ST-segments, which are then
summarized by means of averaging. The range of values for
theresulting ITS index is[0,4]. The zero value corresponds
to the perfect alignment across trials while the value of two
corresponds to a random one. A rapid drop in the time
course of this index, while the tv_Energy(t) is remaining
constant, indicates a well time-locked phase-reorganization
event.

Pattern analysis of VS-based ST-signals
Feature extraction

The ensemble of x(t),i = 1, 2..., N signals from each
run was treated as a collection of tempora patterns and
pattern analysis principles were then employed for a de-
tailed study of the N70m response variability. A simple
data-driven procedure was adopted for extracting features
from each ST-pattern (of all runs). Based on the pattern of
the r45-run ensemble average, a set of p latencies around the
latency t,o Of the N70m peak was defined from the zero
crossings around it (see Fig. 1). The chain of signal values
at these latencies (i.e., the specific segment) constituted the
set of extracted features. In this way, the feature vector
extracted from the ith ST-pattern x;(t) was a p-dimensional
vector of the form:

p—1
Xi:Xi(tmaxr p): X tmax_T-Ts y e

Xi(tmax — L.T9), Xi(tmad)s Xi(tmax + 1.T9), .. .,

p—1
s 2527 |

After the feature extraction step, the given record of
N70m responses was treated as a collection of points em-
bedded in a multidimensional feature space C RP. The ST
segments were tabulated separately for each run in a corre-
sponding (Nxp) data-matrix

X data — Xdata(tmaxy p) = [Xl’XZ‘ . .’XN],

that can be thought of as containing the different snapshots
of regiona brain activity during the specific poststimulus
time interval.

Vector quantization

In short, vector quantization (VQ) techniques encode a
data manifold V C RP utilizing only afinite set of reference
or “codebook” vectors O; € RP, j = 1, .. ., k. A data vector
X € V is described by the best-matching or “winning”
reference vector O;, for which the distortion error is mini-
mal. This procedure divides the manifold V into a number
of subregions

Vi={XeV:|X-0f=[Xx~-0fVi}

called Voronai regions (or polygons), out of which each
vector X is described by the corresponding reference vector
O,. The VQ procedure is the multidimensional analog of
splitting a set of scalar values into bins of unequal, adap-
tively defined bin widths. It actually performs a parcellation
of the Feature-Space, known as Voronoi Tessellation (Mar-
tinez and Schulten, 1994). The efficient application of VQ
depends mainly on the proper selection of the reference
vectors.

In this study VQ was invoked as ameans of summarizing
the information contained within each ensemble X932 of
N70m snapshots, while inducing minimal distortion. The
design of the encoder consisted of applying the “ neural-gas’
algorithm to the data matrix from the r45-run in order to
compute the reference vectors. This algorithm is a neural
network model (Choy and Siu, 1998; Atukorale and
Suganthan, 2000), which converges efficiently to a small,
user-defined number k < N of codebook vectors, using a
stochastic gradient descent procedure with a “soft-max”
adaptation rule that minimizes the average distortion error.
The computation of the k codebook vectors was followed by
the application of the encoder: the nearest codebook vector
was assigned to each X; in the data matrix X922 for every
run. This resulted in the k-partition of the corresponding
ST-segments set, which was finally represented by an (Nxk)
partition matrix U, with elements u;; such that

1 ifXEV, <« o
“ii_{o ifxi¢vjj 2 EluuzN- ®)
]

With this encoding scheme, the bulk of information con-

Fig. 3. A picturesque representation of the vector quantization results. (a) A 2D representation of the employed codebook is given, based on the MST graph
of the included reference vectors. Each node corresponds to one reference vector and nearby nodes correspond to similar reference vectors. The index attached
to each node has resulted from the graph-theoretic ordering of the reference vectors. This ordering enables the handling of the codebook in the form of an
ordered list of reference vectors. The depicted ranks of the reference vectors also define the ranking of the corresponding Voronoi regions. (b) The tree
diagrams shown have been based on the codebook vectors cartography given in a and graphically depict the distribution of the N70m single-trial segments
in the different \VVoronoi regions, for each run separately. The blue (red) arrows indicate V oronoi regions with significant increase (decrease) in the proportion
of N70m segments, which were more similar to the corresponding reference vectors. Because the significance has been assessed with respect to the
distribution in the control condition run, this figure visualizes the effect of stimulation as a function of stimulus size.
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tained in the data matrix was represented in a parsimonious
way. The fidelity of the encoder was quantified via the
following index, which is the total distortion error divided
by the total dispersion of the data:

iNzluij”Xi - Oj”2
X = X|?

(6)

We tested the hypothesis that the stimulus induces
changes in the population of the VVoronoi regions. In order
to assess the statistical significance of such a tendency, the
VQ procedure was applied repeatedly to collections of ST
segments sampled randomly from the control condition run
dataset. The corresponding proportions of segmentsin each
Voronoi region were calculated and used to form a baseline
distribution for each region separately. Based on this base-
line distribution, the deviation of the segments proportion
under each of the three stimulation conditions was ex-
pressed as a P vaue.

Zl -

N
X =—> X, nDistortion=
i=1

Visualizing the VQ results via tree diagrams

For ease in the presentation of the VQ results and to
advance their interpretability, the Minimal Spanning Tree
(MST) of the reference vectors was constructed (Kangas et
a., 1990) and used in three ways: (1) to produce a two-
dimensional map in which the reference vectors were rep-
resented as points and the relative morphologica differ-
ences between these vectors were represented geometrically
as interpoint distances, using a distance preserving tech-
nigue known as “planing” (Laskaris and loannides, 2001);
(2) to order them using a standard graph-theoretical proce-
dure known as tree-diagram traversal (Laskaris and loan-
nides, 2001; Baumgartner et al., 2001) (this ordering
scheme provided an ordered list in which similar reference
vectors have similar ranks and are used for the efficient
handling of the single-trial data); (3) to visualize the distri-
bution of ST segments in the different VVoronoi regions, for
each run separately, using the two-dimensiona projection
of the corresponding reference vectors and depicting graph-
ically, with the size of MST nodes, the proportion of ST
segments falling within each region.

Grouping ST patterns
The computed k partition was generalized from the ST
segments { Xi};—,.n to the corresponding ST patterns x;(t), t

= —100:200 ms. The N; patterns with segments assigned to
the same Voronoi region V; formed the jth group and a
prototypical time course of regiona brain activity was de-
rived via within-group averaging. The computed subaver-
agesyt),j=12..,k

. LaU; Xi(t
N; = EUH' yi(t) = W )

|

represent the different modes of evoked response, collapsed
into a single time course when ensemble averaging is ap-
plied. This can be expressed with the simple formula

k

N, 13
a = NJ X(t) = N 2 xi() = 2 o yi(t) ®)

j=1

which shows, in mathematical terms, how the ensemble
average can be decomposed into the above defined subav-
erages. In this decomposition, the mixing coefficient asso-
ciated with the jth subaverage is the proportion o; of the
corresponding patterns assigned to the jth group. Such a
decomposition is informative if the computed subaverages
are different from each other, which is eguivalent to the
condition that the corresponding groups of ST patterns are
forming compact, well-separated clusters (Fukunaga, 1990).
To validate the previous “forced clustering” procedure
(Yager and Filev, 1994), a functional from the partitional-
clustering literature (Jain and Dubes, 1988) was utilized.
Using a moving window, the within-groups cohesion of the
ST-patterns morphology was quantified as a function of
latency. For every latency t, the endowed segments
{X(t,p)};—.n Were used to compute the total dispersion of
the grouped patterns, which was then normalized by divid-
ing it by the dispersion of the overall set of patterns as

Ly E]kzluij”Xi(t: p) — Y(t, p)|I®
NIXi(t, p) = X(t, p)lf?

The resulting curve, denoted as nSc(t), expresses the reduc-
tion in the scattering of the ST patterns due to their partition
into homogeneous groups and presents a value smaller than
unity at the latencies where this partition is valid. A ran-
domization test (Jain and Dubes, 1988) was employed in-
dependently for each set of segments corresponding to each
latency, to assess the statistical significance of the obtained
values.

nSc(t) =

©)

Fig. 4. The ordered list of the prototypical N70m responses. The M ST-based ordering of the reference vectors (Fig. 3a) defined the rank of each of the groups
that the VS-based single-trial signals formed after the application of the vector quantization procedure to the data from the r45-run. The display of the
computed within-group averages [Eq. (8)] has been organized according to the ranking of the corresponding groups. To emphasize the highly variable nature
of the N70m response, all subaverages have been plotted using a common amplitude scale and are accompanied by the ensemble average (black thin trace).
The number of single-trials that were included in the computation of each subaverage has been tabulated in Table 1.

Fig. 6. A Markovian analysis of the N70m response dynamics for the r45-run. (a) The state transition matrix (TM) which has been computed based on the
sequence of response states as a function of stimulus repetition. (b) An estimate of the state transition matrix for the case that the within-run order of the
single-trial responses was entirely random. (c) The most systematic transitions have been detected by thresholding the TM entries, at P < 0.1, based on a
permutation test. An extra black frame denotes the transitions that were significant at P < 0.01 level.
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Within-group characterization of N70m evoked responses

The process underlying the generation of the evoked
response was characterized for each group separately using
the time-varying energy [Eq.(3)] and the intertrial synchro-
nization [Eq.(4)]. The computations involved in the two
descriptors were restricted among the single trials within
each group. For instance, Eq.(3) took the form

N

1 |
t_Energy,(t, p) = 5 X ulX(t = 1k

D ]
(10)

In order to assess the statistical significance of the obtained
measurements, the same procedure was applied repeatedly
to samples of ST patterns, with exactly the same number N,
of curves, selected from the control condition run (via ran-
dom sampling with replacement). The mean value and the
standard deviation of the obtained measurements were sub-
sequently estimated and used to signify the 99% confidence
interval in the corresponding graphs. The adopted procedure
provided us with the range of values that the tv_Energy (or
the ITS) parameter can take when its estimation is based on
data from the control condition. Fluctuations of the tv_En-
ergy;(t) curve (or the ITS(t) curve) outside this range can be
considered as indications for stimulus-induced changes in
the dynamics of brain activity and can characterize the jth
group of responses.

Markovian analysis of evoked response succession

The variability of the N70m response within a run was
studied further by adopting a Markovian approach, well
fitted to the VQ-based encoding scheme. Following previ-
ous electroencephalographic studies, for instance (Jansen
and Cheng, 1988; Ktonas et al., 2000), each Voronoi region
V; was treated as representing a specific state of the process
generating the N70m response. For each run, the (kxk)
transition matrix TM was computed from the sequence of
N70m response states as a function of stimulus repetition.
The TM(i,j) entry of this matrix indicated the probability
that the process would go from state V; (at the current trial)
to state V; (in the next stimulus application) and it was
estimated using the formula

k
TM(, J) = Ny, - (Env‘—wj)711 (11)

j=1

where the first term denotes the number of times during the

run under study that the process had been observed to go
from state V; directly to state V. The gaps, which had been
induced in the sequence of trials due to the exclusion of
artifact contaminated trials, were taken into consideration.

A permutation test (Good, 2000) was applied to detect
which of these first-order transitions were more (or less)
frequent than in the case that the order with which the single
trials had been recorded was of no importance. The N70m
ST segments were reordered 1000 times (i.e., trial shuffling)
and the corresponding transition matrices were estimated.
The computed values corresponding to each cell (i,j) were
used to form a distribution based upon which the signifi-
cance of each transition probability TM(i,j) was assessed
independently from the other entries.

Tomographic analysis of MEG signal

In order to identify the sources contributing to the signal
emerged from the VS transform and relate their activity
with the variability seen in the regional dynamics, we per-
formed tomographic analysis of the MEG signal. Magnetic
field tomography (MFT) (loannides et al., 1990; loannides,
1994) was applied to obtain tomographic localization of
activity throughout the brain from the single-trial MEG
data. MFT produced probabilistic estimates for the nonsi-
lent primary current density vector J(r, t) at every timedlice
(1.6 ms) and for al thetrialsin arun. The single-trial MFT
solutions were then grouped and subaveraged according to
the k partition of the VS-based temporal patterns. This gave
rise to prototypes of spatiotemporal maps of brain activity.
Visual exploration of these MFT-based prototypes was per-
formed within the broad region of sensitivity of the VS
transform to identify the major generators of the N70m
response and its variahility.

Associating regional with local dynamics

We interpret the responses derived from the VS as re-
gional, because the VS sensitivity, although considerably
more restricted than that of the individual sensors, is till
rather extended, covering a fairly wider area than say a
cytoarchitectonically defined area like V1. Our experimen-
tal design alowed us to contrast these regional responses
with local responses. Specifically we confirmed that the V1
location obtained in the earlier combined fMRI/MEG study
(with stimuli placed in the same location in the visua field
(Moradi et a., 2003)) was again activated in the new ex-
periment. The exact location of V1, already identified from

Fig. 5. Characterizing the different modes of evoked response. Based on the MST diagram of Fig. 3a, five groups of VS-based single-trial signals have been
selected and plotted using the same color with the corresponding prototypical responses shown in Fig. 4. Below the single-trial traces, and using the same
color, thetv_Energy;(t) and the ITS(t) traces are depicted providing awithin-group characterization of the response dynamics. To ease the comparisons across
groups, the ensemble average and the trace of the aggregate tv_Energy (ITS) for the r45-run have been superimposed (as black thick traces) to each group

of trials and each within-group tv_Energy;(ITS) trace accordingly.
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the earlier study, was utilized to extract from the obtained
single-triadl MFT solutions, at the level of individual re-
sponses, a signature of the local dynamics. A region of
interest (ROI) wasfirst defined as a sphere with radius of 1.0
cm containing V1. For theith single trial, an ROI activation
curve (acv curve) X7 (t) = J;' (t) was then calculated along
the main direction of the current density as a function of
time, where J'(t) = Jrod(r,t) - Oro &°r and with g,
representing the direction of the current density vector at the
maximum (modulus) of the averaged MFT solutions within
the ROI. For each run, the acv curves x*° (t), i =
1,2,...N formed a new set of temporal patterns. A com-
parative study of this set and the corresponding set of
VS-based ST patterns was carried out to associate the local
with the regional dynamics, and hence investigate func-
tional relationship between the regiona and local neuronal
responses.

We followed a structural association approach. The basic
underlying principle in this approach is that the functional
coupling of two brain areas can be detected as similarity, in
terms of structure, between the two corresponding, concur-
rently recorded sets of single-tria signals (Laskaris and
loannides, 2002). Specifically, to examine the possibility
that the regiona dynamics might affect the generation of
responsein the early visual areas, we compared the structure
detected in the ensemble of N70m snapshots from arun (as
expressed by the elements u;; of the partition matrix U [Eq.
(5)], with the structure in the corresponding set of single-
trial acv curves from the V1-related ROI. To this end, we
grouped the acv curves according to the partition matrix U
and performed within-group averaging. The resulted subav-
erages

iNzluij FOl(t)

N, '

N
N; = Euij, yro(t) =
i=1

i=1,2...k (12

were compared with each other. The latency ranges, where
these curves become more dissimilar (or equivalently the
corresponding groups of acv curves were forming homoge-
neous clusters), corresponded to events of functional depen-
dence of the neura activity in the circumscribed ROI on the
N70 response. To quantify such a trend in our data, we

replaced in the definition of the nSc index [see Eq. (9)] the
set {x(t)};i_.n Of VSbased patterns with the set
{xFO'(t)},_ 1.y Of acv curves and used the resulting index to
validate the grouping of the acv curves. In this case, the nSc
index served as a nonlinear interdependence measure,
which quantified the functional covariation of regiona and
local activity. The obtained nSc(t) curve can be thought of
as a “transfer function” showing if/how the structure de-
tected in the set of N70 snapshots manifests itself in the set
of single trials from the lower-order visua aress.

Results
A regional study of the evoked response variability

The averaged (VSbased) evoked response

In both subjects, the averaged multichannel signal from
the r45-run showed a very clear early evoked response. The
spatial bipolar pattern at the denoted latency (Fig. 1b)
guided the selection of the channels used in the VS trans-
form [Eq.(2)]. The VS signal shown in Fig. 1c (black trace)
reflects the temporal evolution of the averaged N70m re-
sponse, which appears as a clear deflection from a zero
baseline.

After applying the designed V'S operator to the single-
trial data under al the conditions, the extracted ST patterns
were averaged for each run separately. Fig. 2 contains the
comparison of the averaged N70m response across the dif-
ferent runs. The averaged signals are superimposed in Fig.
2a, while in Fig. 2b and c the tv_Energy(t) curve and the
ITS(t) curve are given in the same format, providing an
aggregate characterization of the response generation in the
different runs. Taking into consideration the traces of both
descriptors across runs, two facts, often overlooked when
dealing with averaged data, are revealed. First, despite the
zero baseline seen in the average response, a continuously
active system is stimulated. Second, despite the gradual
alteration of the averaged N70m deflection with the stimu-
lus size, the mode of the evoked response actually switches
in a nonlinear fashion. The averaged N70m response in the
rd5-run is built mainly via a time-locked increase of the
poststimulus activity relative to the activity in the prestimu-
lusinterval. On the contrary, the phase reorganization of the

Fig. 7. Activation in polymodal parietal areas (BA5/7) obtained from the single-trial MFT solutions around the latency of N70m response. The instantaneous
maps of current density vectors at three latencies for the five prototypes described in Fig. 5 for subjects S1 and S2 are shown on the left and right panels,
respectively. Each map is displayed at a midsagittal slice through the identified BA5/7 area. Each row corresponds to one prototype. The normalization for
each map has been done separately, but in order to ease comparisons, the maximum current density within each map is printed in text at the top of each map
as a fraction of the overall maximum appearing in one of the 15 maps. The green outline denotes the sensitivity profile of the VS for subject S1 at level 0.3

and for subject S2 at level 0.1.

Fig. 9. Validation of the k-partition emerged by the application of the VQ-based procedure to the set of N70m single-trial snapshots from the r45-run. The
indices assigning the N70m segments to different VVoronoi regions were used to split into groups both the set of VS-based single trials (reflecting regional
dynamics) and the set of the corresponding signals from the ROI containing the early visua areas (reflecting local dynamics). The top panel shows the
latency-dependent normalized dispersion of the grouped V S-based single-trial patterns, while the bottom panel shows the corresponding trace computed for
the within V1-ROI single-trial activation curves. The N70m-related latency range, based on which the k-partition was computed, is depicted using a gray

shade.
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Fig. 8. Organizing the responses from the primary visual cortex (V1) based
on the ordered structure of N70m variability. Top panel: for each subject,
the V1 related ROI is plotted as awhite circle with awhite arrow indicating
the main direction of the current density vector from the MFT solutions.
The Taaraich coordinates for the V1 ROI are also printed in text (x, y, z
mm) and the cal carine sulcus (CS) is highlighted as a white curve. Bottom
panel: the within-ROI single-trial activation curves have been grouped
according to the k-partition of the V S-based single trials and the prototyp-
ical courses of activation, computed viawithin-group averaging [Eq. (12)],
are presented in aform of ordered list that corresponds to the one presented
in Fig. 4. The subaverages have been plotted using a common amplitude
scale and are accompanied by the ensemble average of the activation
curves (black thin trace).

ongoing activity contributes mostly to the formation of the
averaged-N70m response in the r18-run.

A VQ-based study of the N70m variability

Based on the single-trials segments from the r45-run,
which was the run corresponding to the strongest average
N70m response (see Fig. 2), an encoder of k = 10 reference
vectors was designed. The computed reference vectors were
then ranked utilizing their MST graph (see Fig. 3, top) and
this ranking defined the labeling j = 1:10 of the correspond-
ing Voronoi regions V; subsequently used in the VQ proce-
dure, which was applied to each set of N70m-related seg-
ments from all runs. The adopted encoding scheme was
validated for each run separately using Eq.(6). The com-
puted nDistortion index, in al cases, was found to be <1

(see Table 1, last column). This showed that the set of
reference vectors computed from the r45-run could be used
to represent the response variability in al the runs (or
equivalently the Voronoi regions could be kept fixed across
the different runs). Thisin turn allowed us to compare the
results obtained by applying the VQ procedure to different
runs. The number N; of N70m segments falling in the jth
Voronoi region has been tabulated in Table 1, where in the
case of the control condition run an average estimate (see
Methods) has been included. Fig. 3 is a pictoria represen-
tation of these results graphically depicting the correspond-
ing proportions & = N;/N. The Voronoi regions were pop-
ulated in a stimulus-size-dependent manner. In both Table 1
and Fig. 3, the Voronoi regions with a significant increase
(decrease) in this proportion, at level P < 0.05, have been
denoted by upward (downward) arrows. It is evident when
comparing the different runs that the increase in the stimu-
lus size causes the shift of ST segments from some specific
branches of the tree diagram to other branches (especially
toward Voronoi regions S1: 4, 6, 7, 8,9, 10 and S2: 2, 8, 9,
10). Fig. 3 clearly shows that the greater the visua stimulus
size, the higher the response variability is, because it is the
r45-run in which the N70m segments are distributed most
uniformly.

The different prototypical (VSbased) evoked responses
The set of ST patterns from each run was split into k =
10 groups according to the assignment of the corresponding
N70m segments to the predefined Voronoi regions. The
labeling of these regions defined the labeling of the formed
groups. This in turn enabled the orderly presentation of the
prototypical evoked responses produced via within-group
averaging [Eqg. (7)]. Fig. 4 contains the N70m prototypes
computed from the ST patterns of the r45 run in direct
contrast with the ensemble average, which clearly indicates
that the variability of the N70m response has both amplitude
and latency facets. Despite the “transient character” of the
averaged response, there are subaverages (S1:1,10 and S2:
1,5,6,10) showing that the single-trial activity may present
oscillatory characteristics. The organized display of Fig. 4
clearly indicates that the prestimulus activity and the post-
stimulus activity are strongly coupled, because the proto-
typical responses differ well before the selected latency
range upon which the grouping was based. Two tendencies
are worth noting. First, the amplitude of the (sub)averaged
response is higher whenever the prestimulus oscillatory
activity is characterized by high amplitude, supporting the
hypothesis that the strength of evoked response depends on
the amount of prestimulus « activity (Brandt et al., 1991;
Makeig et al., 2002). Second, the phase of the ongoing
oscillatory activity at the time of stimulus onset plays a
critical role in the evolution of the evoked response (Jansen
and Brandt, 1991), as can be inferred by contrasting two of
the subaverages (for S1:1 vs 10 and for S2:6 vs 10). It
should be noted that a high consistency was evident regard-
ing the morphological characteristics of the obtained proto-



N.A. Laskaris et al. / Neurolmage 20 (2003) 765-783 779

types, when the grouping procedure was repeated for the
ST-pattern sets from the other runs.

The rich dynamic behavior of the N70m generators, as
revealed by the grouping and subsequent subaveraging of
the ST patterns, indicated the existence of distinct modes of
evoked response that the application of ensemble averaging
had compressed in one single waveform. VQ disentangled
these modes and enabled a natural decomposition of the
averaged signa in terms of the computed subaverages [see
Eq. (8)], To examine if this decomposition, which had been
optimized for the latencies around the N70m deflection, was
meaningful in any other latency range, the nSc(t) curve [Eq.
(9)] was computed. For al the runs, the grouping of ST
patterns was found to be valid not only within the N70m
latency range, but also well before. This indicated that the
structure seen in the set of N70m snapshots depended on the
structure in sets corresponding to earlier single-trial seg-
ments.

Characterizing the different modes of response

To characterize the distinct evoked response modes as-
sociated with the different groups, the time courses of time-
varying energy and theintertrial synchronization descriptors
were computed for each group separately and contrasted
with the corresponding ones computed for the overall set of
ST waveforms in the run. Fig. 5 shows the results of this
characterization for the case of five groups from the r45 run.
The selection of these five groups was based on the MST
graph of the 10 reference vectors used in the VQ procedure.
Given that the reference vectors provided a compact de-
scription of the N70m-related dynamic manifold, their MST
graph was considered as the skeleton of the response vari-
ability. Using the faithful representation of this graph given
in the top panel of Fig. 3, five among the 10 reference
vectors were selected to cover the whole range of dynamic
behavior. Thefive groups of ST patterns associated with the
selected reference vectors were the ones included in Fig. 5.
The characterization of the rest of the groups can be “in-
ferred” using the characterization of the groups correspond-
ing to nearby MST nodes. For each of the selected groups,
the N; ST waveforms have been included in the top panel
along with the overall average of the N waveformswhichis
shown in black. The time course of the within-group tv_En-
ergy descriptor [Eq. (10)] has been included in the middle
panel, while that of the within-group I TS descriptor isin the
bottom panel. The horizontal lines depict the 99% confi-
dence interval for the “null hypothesis’ that the shown
fluctuations of these parameters can be observed under
control condition as well, and therefore they cannot be
assigned to stimulus-induced perturbations. For comparison
purposes, the tv_Energy(t) curve and the ITS(t) curve cor-
responding to the overall set have been also included in the
corresponding panels of Fig. 5 (as black thick lines). This
graphical contrast of the different response dynamics clearly
indicates that a highly adaptive system is stimulated. Dis-
tinct processes underlie the response generation in the dif-

ferent groups of single trials. The mode of response can
change within a run from a transient increase in the signal
energy of the activity to the phase resetting of the ongoing
regional activity (compare the groups 3 and 10 of subject
S1). Apart from these two well-known evoked response
scenarios, the emergence of other modes is also observed.
For instance, groups exist in which the included responses
are better described as stimulus-induced enhancement of the
ongoing rhythmic activity (S2: group 10 and especialy
group 1) or stimulus-induced desynchronization (S1: group
3). Interestingly, the group with subaverage similar to the
ensemble average (for S1: group 4 and for S2: group 7) is
characterized by a significantly low level of activity before
the stimulus onset followed by a transient increase in the
energy just after the onset. The particular mode can there-
fore be considered an entrainment of the N70m generators
by the periodic stimulation.

The dynamics of N70m response succession

A Markovian approach was carried out to investigate
possible underlying mechanisms that work at longer time
scales and shape the N70m response generation by control-
ling the transition between successive responses. Fig. 6
contains such a characterization of the trial-to-trial dynam-
icsfor the r45 run. The computed state transition matrix TM
(Fig. 6a) differs substantially from the transition matrix,
which is given in Fig. 6b and corresponds to shuffled single
trials (average over 1000 permutations). Theimage given in
Fig. 6¢ shows the transitions that occurred systematically.
Those entries which did not correspond to transitions more
(or less) frequent than in the case of shuffled data (at P <
0.1 significance level) are shown in gray, and the rest of the
entries are depicted using a coloring that denotes the abso-
lute number of transitions. An extra black frame is used to
denote a transition that was significant at P < 0.01 level.
While a significant increase in the frequency of a few
first-order transitions was detected indicating that the re-
sponse succession was partially of deterministic character,
no significant decrease was detected. The most striking
result is that for both subjects, a P < 0.01 significance
level, the transition from a high-responsiveness state to a
low-responsiveness state (S1:9—3, S2:10—6) isreveaed to
be the most important law governing the sequence of re-
sponses. Similar results were also observed in the other
stimulation runs, when the above thresholding scheme was
applied using a higher significance level as threshold.

Associating the N70m response variability with the
reconstructed brain activity

After grouping the single-trial MFT solutions based on
the partition of the N70m snapshots, activations in widely
separated areas were identified, for each group average. The
MFT-related prototypes based on the N70m classification
were dominated by contributions from polymodal parietal
areas which appeared consistently in the different MFT
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prototypes but at different latencies. The phase and strength
of the activity in anear midline region on the border of BA5
and BA7 (for S1 (3, —40, 57) and for S2 (0, —46, 47) in
talairach coordinates) best correlated with the patterns of the
V S-based prototypes showing a strong N70m response. The
V1 contribution to the N70m response and prototype for-
mation was considerably weaker than the contribution from
the polymodal areas. Fig. 7 shows the instantaneous maps of
current density vectors at three different latencies for the
five prototypes described in Fig. 5 at a midsagittal dlice
through the identified BA5/7 area. The triplet of maps cor-
responding to one prototype was normalized, originaly,
independently from the others. To enable comparisons
across prototypes, the maximum current density within each
map is given at the top of each map as a fraction of the
overall maximum appearing in one of the 15 maps. The
green outline shown in these maps denotes the sensitivity
profile of the VS at level 0.3(0.1) for subject S1(S2). The
white circles correspond to spherical ROIs that were defined
over areas showing increased activity in the latency range
around the N70m-peak latency. The topmost of them de-
picts the location of the BAS/7 area. The white arrow
attached to each ROI indicates the direction of the current
density vector at the maximum of the averaged MFT solu-
tions within the ROI. The yellow arrows mark the positions
of loca maxima in the instantaneous maps and denote the
corresponding directions of the current density vector. The
regions corresponding to activity higher than the 60% of the
maximum of brain activity within each triplet of maps have
been colored purple. For subject S2, the displayed sagittal
view contains the V1-related ROI (the bottommost circle),
which shows activity at the given threshold only for one
prototype, at about 20% of the overall maximal activity.

The N70m response variability and its relationship to the
activity in primary visual cortex

To examine the possibility for afunctional covariation of
the regional activity reflected in the VS-based signals with
the activity within the ROI containing V1 (Fig. 8, top), the
k partition from each run was applied to the corresponding
ROI single-trial activation curves and prototypes of local
activity were computed [Eq. (12)]. The visual inspection of
the computed prototypes was used to detect the structural
similarity between the set of V'S patterns and the set of ROI
acv curves, which was further assessed using the nSC index.

Fig. 8 shows the local activity prototypes from the r45
run in exactly the same format as the corresponding
V S-based ones given in Fig. 4. The comparison between
Figs. 4 and 8 shows that the single-trial variability of
N70m response as summarized by the VS-based proto-
types has a functional counterpart in the ROI acv curves.
As a quantitative measure of the strength of the observed
functional covariation, the nSC(t) curve was computed
expressing the validity of the VS-based grouping for the
ROI activations. The bottom panel in Fig. 9 shows the

latency dependence of the nSC parameter along with the
99% confidence interval of the corresponding null hy-
pothesis that this grouping is a random partition. Fig. 9
shows that the k partition constitutes a valid description
of the single trial variability around the N70m latency
range for both the VS-based signals (from the N70m
segments of which it has been computed) and the V1
related acv curves, which were derived independently
from the single trial tomographic solutions. There are
also differences in the latency range over which the k
partition produces a significant reduction in the variance
of the involved waveforms. For the V1 acv curves (Fig.
9, bottom) thislatency range is confined to the poststimu-
lus period from 10 to 100 ms, while for the V S-based
time series (Fig. 9, top), it extends through almost the
entire latency range, including the prestimulus and late
poststimulus periods (the examined period was from
—100 to 200 ms).

Discussion
The study of regional response dynamics

We studied the single trial variability in N70m visual
responses in a novel way using pattern analysis principles
combined with graph theoretic and signal analysis tools.
The dominant spatial pattern in the averaged signal during
the N70m latency range was used to define a simple spatial
operator using sensors over the occipital and parietal areas.
The virtual sensor (VS) transform was then applied to the
multichannel data producing, for each single-trial response,
a time series encapsulating the regional dynamics. The
N70m response variability was then encoded via vector
guantization in a simpler format by simply assigning the
membership of each time series to one of the different
response classes. The 10 reference vectors used in the
adopted encoding scheme had been computed from the run
presenting the highest N70m response variability in order to
ensure no loss of information. An efficient neural compu-
tation algorithm, powerful in discovering potential self-
organization tendencies in the N70m-related dynamic man-
ifold (Penny et al., 2002), was employed for the definition of
the reference vectors. The number k of reference vectors
was set to 10, after extensive experimentation which
showed no qualitative differences when k increased, as the
best trade-off between a detailed encoding of variability and
a convenient presentation of the subsequent results. Our
analysis showed that it was possible to describe the broad
spectrum of N70m responses by means of 10 principal
modes, which summarized the variability seen in the MEG
signal and further served as the starting point for exploring
the source of that variability based on estimates of recon-
structed brain activity.
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Aggregate characterization of the evoked response

We have used two simple descriptors (time-varying en-
ergy, tv_Energy and intertrial synchronization, ITS) to ob-
tain measures aggregated over an ensemble of single trias
and characterizing the time course of response within arun.
The comparisons between runs of different stimulus sizes
(Fig. 2) have shown that, even with such a simple stimula-
tion paradigm, a continuously active, nonlinear system is
probed. The output (N70m response) is not a linear trans-
form of the input (stimulus) as it appears to be when com-
paring the averaged signals from different runs. The aver-
aged response is built, in the case of abig stimulus, mainly
through a time-locked, relative increase of the poststimulus
activity, while in the case of a small stimulus, through the
phase reordering of the ongoing brain waves.

Grouping and within-group characterization of single
trial responses

By splitting the ensemble of ST patterns into homoge-
neous groups and performing a within-group characteriza-
tion of the evoked response, it has been shown that avariety
of distinct response modes can appear within a single run.
Each mode presents its own dynamical behavior that, in
some cases, is influenced by ongoing activity well before
the onset of the averaged N70m response. We have dem-
onstrated that ongoing rhythmic activity before the onset of
the stimulus is functionally coupled with the subsequent
response. Both the phase and amplitude of this rhythmic
activity at the time of stimulus determines the poststimulus
response (Makeig et a., 2002). The existence of a set of
responses (S1: group 4 and S2:group 7 in Fig. 5) during
which the regional activity appears to be endaved by the
exerted periodic forcing indicates the adaptive nature of the
ongoing rhythms. The overall spectrum of our results ex-
tends the current dichotomy between “stimulus-evoked
time-locked brain events’ and “stimulus-induced phase re-
setting of ongoing waves’ to avariety of complex nonlinear
interactions between the sensory input and the encephalo-
graphic processes.

The stimulus size controls the frequency of appearance
of the different response modes within arun in a systematic
way (Fig. 3). In addition, the process underlying the re-
sponse transition from one mode to another is considerably
different from a stochastic one (Fig. 6). These findings
together with the fact that the characteristics of each re-
sponse mode contain statistically significant stimulus-re-
lated events (Fig. 5), provide a strong indication that the
variability seen in the VS signa reflects a polymorphic
processing of the incoming stimuli and not random fluctu-
ations.

Figs. 4 and 5 present the variability in the regiona
activity in an organized fashion clearly indicating that the
single-trial traces in our data cannot be described by the
“signal plus noise” model. Our results are consistent with a

state-dependent response (Kisley and Gerstein, 1999; Lutz
et al., 2002). The nSc(t) index provides time-dependent
quantification of the grouping quality, which shows, in a
mathematically sound way, that the structure detected in the
single-trial datawithin the latency range of N70m deflection
depends strongly on the single-trial activity at earlier laten-
cies (Fig. 9, top).

Distinct dynamics are fused into one time course by
ensemble averaging

Ensemble averaging, by falsely treating the ongoing ac-
tivity as being indifferent to the stimulus, suppresses in a
single waveform entirely different modes of evoked re-
sponse (Mast and Victor, 1991; Liu and loannides, 1996;
Fries et al., 2001). Unless there is a predominant mode, the
computed average is a mirage of the response generation
process where different dynamics have been collapsed. The
so-called “tria-to-trial nonstationarity” has been shown to
lead, when is not taken into consideration, after averaging to
erroneous interpretations regarding not only the time course
of the response, but also the temporal modulation of mea-
sures like the power spectrum and the cross correlation
(Truccolo et al., 2002), because an averaging step is aso
included in their estimation. This becomes directly evident
also from our results, when the aggregate characterization of
the response dynamics is compared with the corresponding
within-group ones (Fig. 5). The introduced decomposition
formula [Eq. (8)] models this effect for the ensemble aver-
aging of the single trial signals. The same decomposition
holds for every other set of time courses, which are first
deduced for individual single trials and then averaged to
produce an aggregate latency dependent measure like the
tv_Energy trace [Eq. (3)]. Specificaly, Eqg. (8) can be in-
voked to offer an explanation for the change of averaged
N70m response with the size of the stimulus (Fig. 2) within
the framework of a “state-dependent response.” It is the
relative frequency with which the distinct response modes
appear during a run that is atered with the increase of the
stimulus size (see Fig. 3 and Table 1).

The source of N70m variability

The diversity of results regarding the nature of the early
responses to simple visual stimuli, and especially the N70m
response in earlier studies using averaged signals (Russo et
al., 2001; Tzelepi et d., 2001; Vanni et al., 2001; Foxe and
Simpson, 2002), is likely to be not only due to differences
in experimental protocol and source reconstruction analysis,
but also due to mixing distinct response histories and/or
neglecting the active role played by the associated ongoing
activity. The exploration of the MFT-based spatiotemporal
counterparts of the VS-based prototypical responses has
shown that among the widespread network of ongoing ac-
tivity generators, the sources which contribute most to the
variability in the signal properties of the N70m response



782 N.A. Laskaris et al. / Neurolmage 20 (2003) 765-783

seen in the virtual signa correspond to multimodal areas,
while the activity in the primary visual area has arelatively
negligible contribution.

The coupling of primary visual area responses to the
regional dynamics

Our results suggest that a prerequisite for the reliable
characterization of the activity in the primary visual areais
the sorting out of the dominant contributions coming in
different modes from the polymodal areas. The structural
coherence between the regiona single-trial data and the
contemporary ROI single-trial activation curves, expressed
by the nSc(t) index (Fig. 9, bottom panel), demonstrates the
functional covariation of regional and local responses. The
latency range of significant nSc values for V1 is confined to
a narrow range of latencies, consistent with a causal influ-
ence by the stimulus and the known timing of V1 activation.
In contrast, the partition of VS signals leads to significant
nSc values (Fig. 9, top panel) for a very extensive range of
latencies, suggesting that the V1 response is also strongly
conditioned by the activity in the multimodal areas, and
hence a very strong and very early top-down influence on
visua processing. Significantly, for both subjects, the nSc
for the V1 partition precedes the corresponding minimum
for the VS partition by a few milliseconds, suggesting a
bottom-up influence. Therefore, the nature of the variability
in the ROI activationsindicates a close rel ationship between
the ongoing rhythms and V1 activity, which cannot be fully
encapsulated by a bottom-up vs top-down dichotomy. Our
results are in accordance with the picture of a “temporally
compact” visual cortex (Hupe et al., 2001).

Links with earlier studies

Our methodology is similar in principle to an approach
employed recently for studying the evoked response vari-
ability in recordings of local-field potential and single-unity
activity from the rat auditory cortex (Kisley and Gerstein,
1999). In that study, the single-trial traces were analyzed
based on their waveforms using principal component anal-
ysis (PCA) in combination with a clustering procedure that
isempirical in nature. The authors showed the failure of the
“signal plus noise” model for their data, also, by identifying
groups of responses which differed in both amplitude and
shape. The response was found to be modulated by the
preceding ongoing activity and the observed variability was
attributed to rapid transitions between different levels of
thalamocortical excitability.

In a more recent EEG study of single-trial variability
(Lutz et al., 2002), the responses were grouped according to
first-person data, i.e., the subject’s verbal report about his
inner experience during a simple visual task at the end of
each single trial. That study also verified that the brain
response is modulated by the background activity and
showed that the fluctuations of subject’s cognitive “context”

defined by many parameters like attention and vigilance are
a major source of variability. Interestingly, not only char-
acteristic patterns of activation in different brain areas, but
also characteristic patterns of synchrony between brain ar-
eas, were identified in the grouped responses indicating the
role of long-range interactions in the response variability.

The present study has clearly demonstrated the nonsta-
tionary characteristics of the process underlying the re-
sponse generation. Thetrial-to-trial nonstationarity has been
recognized in previous studies involving neuromagnetic au-
ditory (Liu and loannides, 1996; Laskaris and loannides,
2002) and somatosensory (loannides et a., 2002) responses.
The new results revea the contribution of the ongoing
fluctuation to this nonstationarity. A functional role can be
assigned to the background oscillatory activity (Brandt,
1997; Schurmann and Basar, 2001; Makeig et al., 2002;
Penny et al., 2002), which is much more composite than
usualy described. Coherent oscillations have been found
(Fries et al., 2001) to mediate the functional coupling of
brain areas, which manifests itself in the form of stimulus-
induced covariation. Recently the emergence of these oscil-
lations has been assigned to feedback connections from
higher brain regions and their role in shaping the responses
of early sensory areas has started to be deciphered (Hupe et
al., 2001; Galuske et a., 2002; Doiron et al., 2003; Gabbi-
ani, 2003).
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