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Abstract— Ecologically relevant stimuli are rarely used in 

scientific studies because they are difficult to control. Instead 

researchers employ simple stimuli with sharp boundaries (in space 

and time). Here we explore how the rhythmogram can be used to 

provide the much needed rigorous control of natural continuous 

stimuli like music and speech. The analysis correlates important 

features in the timecourse of stimuli with corresponding features 

in brain activations elicited by the same stimuli. Correlating the 

identified regularities of the stimulus time course with the features 

extracted from the activations of each voxel of a tomographic 

analysis of brain activity provides a powerful view of how 

different brain regions are influenced by the stimulus at different 

times and over different (user-selected) timescales. The application 

of the analysis to tomographic solutions  extracted from 

Magnetoencephalographic (MEG) data recorded while subjects 

listen to music reveal a surprising and aesthetically pleasing aspect 

of brain function: an area believed to be specialized for visual 

processing is recruited to analyze the music after the acoustic 

signal is transformed to a feature map. The methodology is ideal 

for exploring processing of complex stimuli, e.g. linguistic 

structure and meaning and how it fails, for example in 

developmental dyslexia. 

 
Index Terms— Rhythmogram, Beat spectrum, Continuous data 

analysis, Dyslexia. 

 

I. INTRODUCTION 

HE ambient environment and the activity in the brain share 

a continuous nature characterized by regularities and 

unpredictability. Both systems maintain in their ongoing 

manifestation and activity a memory of the past shaped by fairly 

stable structures and subtle regularities of their immediate 

history across different temporal scales. Yet, we study the brain 

with unnatural simple stimuli that can be repeatedly and 

identically applied, trapped by earlier successes in natural 

sciences where rigid mechanical systems were studied. The 

tendency to use simple artificial stimuli is understandable since 

they apparently provide the necessary control of unwanted 

variation allowing the experimenter to study how changes in one 
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stimulus parameter influence brain activity. The conceptual 

difficulties of this approach are by now well understood but they 

are tolerated because the reductionist approach has produced a 

wealth of new and detailed understanding about the brain. 

Nevertheless, this approach may be too narrow to allow a 

comprehensive understanding of how the brain functions [1]. 

There is a theoretical need to augment our understanding of 

brain function with new knowledge that draws from 

experiments with ecologically relevant stimuli.  

Our earlier attempts to move away from artificial stimuli have 

used magnetoencephalography (MEG) and specifically 

tomographic analysis of the MEG signals [2]. We have used 

auditory stimuli because they are ideal for MEG and because 

rhythm and regularities in time provide a happy medium 

between simple stimuli (tones) and environmental sounds. In 

our first study we emphasized the expectation imposed by a 

sequence of sounds and demonstrated that silence at the time a 

tone is expected can create a similar response in the auditory 

cortex to the response the sound itself would have evoked [3]. In 

the second example we used the rhythmogram to study how 

regularities in the music score of authentic music and sound 

properties (including small changes representing how the 

performer expressed the music) are reflected in the activity  of 

(different areas of) the brain [4]. The rhythmogram is a 

two-dimensional self similarity matrix of the signal that is 

sensitive to subtle regularities in temporal sequences and can be 

applied equally well to physical signals and to measures of brain 

activity. We have recently introduced rhythmogram-based 

analysis to demonstrate that simple and complex rhythms are 

processed differently in the two hemispheres. However, in [4] 

we analyzed the response to averaged data. Averaging increases 

the signal to noise ratio, but may eliminate important details of 

single trial responses. Here we use a more refined methodology 

extending the analysis to deal with unaveraged data. We 

illustrate the power of the basic algorithms with computer 

generated data, controlling different aspects of noise in the input 

signal, including the relative strengths of periodic component of 

interest and non-periodic noise components and the presence of 

jitter in the single trial responses. We then apply the method to 

the real tomographic solutions extracted from the single trial 

MEG signal recorded from musically naïve normal humans.  

 

II. METHODS 

We first describe the algorithms for computing the 

Rhythmogram-based analysis for continuous 

electrographic data of the human brain 
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rhythmogram and beat spectrum of a given signal (Section A), 

and then present the way we generate the artificial signals used 

in this study (Section B). 

A. Calculation of beat spectrum 

The beat spectrum quantifies the signal self-similarity as a 

function of time lag [5]; peaks correspond to major rhythmic 

components of the signal, revealing key periodicities across 

different timescales. The beat spectrum is a robust measure of 

rhythmic signal constituents with weak, well-characterized 

dependence on the level of signal noise. The block diagram of 

the main processing steps for the computation of the 

rhythmogram and beat spectrum is shown in Fig. 1.  

Let s(t) be the signal for which the beat spectrum must be 

computed, defined by discrete samples at times k
t

: 
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involves the following three basic steps [4, 5]:  

Step 1) Parameterization of the signal. The Fourier transform 
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for all time windows ( W
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 is the number of time windows). The 

feature vectors are defined as  

2 2( 2 ) Re(2 ) Im(2 )  i iF j f f fV
  (1) 

(the amplitude frequency characteristic, AFC), where 

)2Re( f
 and 

)2Im( f
 are the real and imaginary frequency 

characteristics (the cosine and sine Fourier transforms). 

An effective algorithm for discrete Fourier transform 

computation was used that allows to calculate the real and 

imaginary frequency characteristics for arbitrarily chosen 

frequencies, i.e., in any frequency range and for any frequency 

sampling rate.  

The result of this step is the spectrogram, i.e. a 

two-dimensional time-frequency distribution representing 

frequency specific changes over time. 

Any one or combination of the following three optional 

pre-processing steps may be performed (only the first two were 

used in the current work): 

1) For each window, the signal is centered at zero, by 

subtracting the window mean, before FT calculation:  

( ) ( )i i i

wc k w k ws t s t s
,             (2) 
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, K is the number of samples in 

the window. 

2) The power spectrum is used instead of amplitude 

frequency characteristic: 
2 2 2( ) Re(2 ) Im(2 )  i i f fP V

     (3) 

3) The mean feature vector V  is calculated by averaging 

i
V

(
1,...,

W
i N

) and then subtracted from each window’s 

feature vector: i i
V V V

. 

Step 2) Computation of similarity measures between feature 
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Fig.1. Block diagram of the algorithm for the computation of the beat 

spectrum. The first block shows the i and j windows, two arbitrary 

segments of the input signal s(t). The second block shows the 

corresponding AFCs, or feature vectors, one for window i and one for 

window j. The third block shows the rhythmogram – two-dimensional 

matrix formed from integrals of the similarity measures D between the 

feature vectors (AFCs). The values of D in the figure are coded in gray 

scale with dark corresponding to small values and bright – to large values 

of D. The final block shows the corresponding beat spectrum which is an 

integral across lines parallel to the main diagonal of the rhythmogram and 

separated from it by a fixed time lag τ. The computation of the beat 

spectrum point corresponding to a lag τ=375 ms (highlighted by the arrow 

in the last block) is computed by summing across the line parallel to the 

main diagonal with the sum sign beginning at the i-value corresponding 

to τ=375 ms. 
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vectors (matrices) for successive temporal windows of the 

spectrograms. The distance measures ij
D

, 
1,...,

W
i N

, 

1,...,
W

j N
 between all feature vectors i

V
 are calculated as a 

scalar product in the M-dimensional parameter space (where M, 

the size of i
V

, is the number of frequency samples):  

( 1) 1

i j

ij

i j

D
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,           (4) 

where i
V

 and j
V

are the feature vectors of i-th and j-th 

temporal windows. The dependence of ij
D

 on magnitude of i
V

 

and j
V

 is controlled by a parameter A which varies from 0 to 1 

allowing continuity from normalized to unnormalized cases. 

When A = 1, Dij is the cosine of angle between vectors Vi and Vj 

When A = 0, Dij is the scalar product of Vi and Vj. 

The matrix ,( )
B Bi j N NDD

is the rhythmogram, from 

which the beat spectrum is calculated. 

Step 3) The periodicity and relative strength of the transient 

responses are straightforwardly derived from the rhythmogram 

matrix using the estimate of the “beat spectrum”, computed 

from the autocorrelation of the rhythmogram matrix, as a 

function of time lag : 

,
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Optionally, the beat spectrum may be normalized so that the 

maximum is always one: 

max/N

k kB B B
,               (6) 

where max max( )kB B
, 

1,..., Bk N
. 

The maximum of beat spectrum is always at 0. Thus, any two 

beat spectra will always correlate well in their initial part. To 

reduce this undesirable effect, the beat spectrum may be 

multiplied by the following window function to set its edges to 

0:  

1 2( ) (1 exp( / )) / (1 exp(( ) / ))w t t t t t a
, (7) 

Here we used the following values: a = 10.0, t1 = 4 ms, and t2  

0.9 times the maximal time lag of the beat spectrum. 

B. B. Generation of the artificial signal 

The artificially generated signal is a sum of several 

components that may be of two types: periodic and random (Fig. 

2). The signal may contain arbitrary number of components of 

each type.  

The periodic component is formed by regular repetitions of a 

finite piece of signal (Fig. 2, A, B). To avoid discontinuities, the 

transition from the end of the current repeated segment to the 

next must be smooth. In our case this is achieved simply by 

having a zero level flat part at the beginning and at the end of the 

repeated segment.  

 
The piece represents a sum of arbitrary number of sine waves 

of different magnitudes, frequencies and phases (which allows 

obtaining signals with various frequency contents), multiplied 

by a window function 
)(tw

 to smoothly set the edges of the 

piece to zero (Fig. 3): 
M
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M is the number of sine waves used, ka
, kf

 and k  are the 

magnitude, frequency and phase of k-th sine wave, 

correspondingly, 
)(tw

 is the window function, 1  and 2  

define the width of the window,  defines the slope of the 

window edges ( 0 ). 

Each periodic component may have different period. This 

gives a possibility to generate a signal that has two or more 

different repeating parts that are independent. 

Some random fluctuations in the interval between the 

repetitions of the identical piece of the signal may be introduced 

(by randomizing, within given limits, the starting point of each 

repeating identical piece, Fig. 2, C) to study the sensitivity of the 

method to rhythm irregularities. 

The random component (Fig. 2, D, E) is modeled using an 
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Fig. 2. Illustration of how the artificial signal is generated. In this 

example, the resulting signal (F) consists of two different periodic 

components (A and B), one aperiodic component (the periods are 

randomized) (C) and two different continuous random components (D 

and E).  
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autoregressive process of user-defined order p. For each 

discrete time it (
Ni ,...,1

) the value of random component 

)( ii trr
 is formed as: 

1

p

i k i k i

k

r a r h

,              (10) 

where ih
is a random number having either Gaussian or 

uniform distribution with zero mean and given variance v, 

a1,...ap are given parameters of the autoregressive model.  

The initial value, 0r , may be chosen arbitrarily and provides 

an initial offset to the signal. In our calculations
00r  was 

used. 

When p=0 (zero-order process), then simply ii hr
. In case 

of first-order process (p=1),  

1i i ir ar h
.                (11) 

When |a|<1, the first-order process is covariance-stationary 

(i.e., 1st and 2nd moments do not vary with respect to time). 

When a=1, the process is not covariance-stationary (as in Fig. 2, 

D). 

There may be an arbitrary number of random components, 

each with different properties.  

In the examples we quantified the relative influence of the 

random component to the artificially generated signal using a 

simple definition for the signal to noise ratio (SNR), namely the 

ratio of the periodic to the random component power: 
2

rand

per

rand

per

A

A

P

P
SNR

,           (12) 

where perA
 and randA

are root mean square amplitudes of 

periodic and random components, respectively. 

III. RESULTS AND DISCUSSION 

A. Experiments with artificial data 

In the experiments with artificial signals the periodic 

component of the signal (Fig. 3, left top trace) consisted of six 

repetitions of the piece shown in inset. The piece was formed by 

a single sine wave of 50 Hz multiplied by a bell-shape window 

function. The period was 250 ms and the total duration of the 

signal was 1500 ms. The random component was generated as 

earlier described, using an autoregressive model of order one 

with a1=1.0 (non-stationary case).  

To investigate the dependence of beat spectrum on SNR, the 

magnitude of the random component was varied while keeping 

the magnitude of periodic component constant. The resulting 

signals are shown in Fig. 3, left column. The normalized beat 

spectra of the signals calculated using 20 ms window size are 

shown in the right column of Fig. 3. 

Since the duration of the signal is 1500 ms, the time lag range 

we can use for the beat spectrum is 750 ms –half of the signal 

duration, as follows from the beat spectrum calculation method 

and inspecting Fig.1. With these parameters, the beat spectrum 

of the periodic component (Fig. 3, right top trace) has clear 

peaks at 250, 500 and 750 ms time lags (the latter is not well 

seen on the figure), which correspond to the period of the 

repeating piece of the periodic component. For a noise-free 

signal (no random component) or small noise level, the beat 

spectrum clearly reveals the repetitions in the signal (peaks at 

250 and 500 ms, marked by dotted lines). For large random 

components the beat spectrum still has peaks at 250 and 500 ms, 

but they are small and comparable with other “noisy” peaks. 

 
Next, the dependence of beat spectrum on the size of running 

time window was investigated. The window size was varied 

from 10 ms to 40 ms (note that the duration of non-zero part of 

the periodically repeating signal piece shown in inset in Fig. 3 is 

about 50 ms and the period of the main frequency component 

(50 Hz) is 20 ms). In all cases the window was moving along the 

signal with 1 ms step, which is equal to signal’s sampling step. 

Fig. 4 shows the beat spectra for different window sizes, for 

SNR=0.018. Small windows produce sharper peaks on the beat 

spectrum; the reason for this is that large windows, moving with 

small step, produce more blurred rhythmogram. 

In the next series of tests the frequency content of the random 

component was close to the frequency of the repeating periodic 

component. This case may mimic more closely the real data, 

where the signal contains both relevant to stimulus and 

irrelevant, but similar activations. The periodic component used 

in this series was the same as in Fig. 3. The random component 
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Fig. 3. Dependence of the beat spectrum on the SNR. The random 

component was generated by a Gaussian pseudo-random number 

generator routine using the same seed value for all cases, thus the random 

components for different values of SNR differ only in magnitude. The 

Y-scale (arbitrary units) is the same for all signal traces. The beat spectra 

are normalized so they are dimensionless (see Methods).  
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was generated using a 4th order autoregressive model with 

following parameters: a1=1.0, a2=0.01, a3=-0.5, a4=0.1, the 

SNR value in this case was 0.128. The first 300 ms of the 1500 

ms-long signal and its components are shown in Fig. 5, left 

column. The signal containing both random and periodic 

components (Fig. 5, C, left trace) looks very similar to the 

random component alone (Fig. 5, B, left trace). Although the 

presence of the periodic component in the signal is visually 

indistinguishable, on the beat spectrum of the signal (Fig. 5, C, 

and right trace) there are clear peaks caused by the periodic 

component (at 250 and 500 ms time lags). These peaks are 

slightly larger than the peaks caused by the random component 

and hence technically distinguishable (this was the case also for 

several other similar signals tested, data not shown). For this 

figure, the beat spectrum was calculated using the power 

spectrum (3) (the square of the AFC) of the window signal 

instead of the AFC, which resulted in slightly more pronounced 

peaks of interest in the beat spectrum. 

 
In real biological responses, events of interest are 

superimposed with irrelevant events that generate comparable 

random noise, just as in the above case. Averaging of many 

repetitions of the response (single trials) will selectively 

enhance the biological responses to repeating identical external 

events provided the internal response to each identical external 

event is precisely reproducible in each single trial. However, if 

this condition is not held, averaging will eliminate responses of 

interests together with noise [6]. Real biological systems in 

general and brain responses to external stimuli in particular are 

highly variable and this has been one of the main criticisms of 

averaging for a long time. 

The beat spectrum method has an inherent robustness to 

variations in response onset latency and can therefore provide 

improvements to averaging single trial evoked responses. The 

beat spectrum emphasizes the overlap between repeated  

patterns; if there is some jitter in the onset of the first pattern the 

peaks in the beat spectrum will be unchanged, provided the 

latency lag between the repeated patterns is maintained. A jitter 

in the latency lag between the repeated patterns will simply 

move the peaks of the beat spectrum. Averaging the beat spectra 

of different single trials will therefore still produce (broadened) 

peaks as long as the jitter is not too large compared to the 

duration of the basic pattern and much smaller than the actual 

mean lag between repeated patterns. To investigate this 

expected robustness of the rhythmogram analysis we generated 

a number of artificial “single trials”, where the random and 

periodic components were produced in the same way (and with 

the same parameters) as for previous case (Fig. 5), but with the 

period of the periodic component varying across single trials. 

The jitter across single trials was restricted to different levels 

across different tests. The jitter in time, introduced a 

misalignment of the repeating pieces of periodic component 

across single trials, and thus limiting the effectiveness of 

averaging.  

For each single trial, the beat spectrum was calculated, and 

then these single trial beat spectra were averaged. Fig. 6 shows 

the results for the averaged single trial signals and averaged 

single trial beat spectra for three different values of period jitter 

(10, 20 and 50 ms, or 20%, 40% and 100% of the non-zero part 

of the repeating piece. The left column of the Fig. 6 (“Signal”) 

shows the averages of 10 (upper traces in each plot), 50 (middle 

traces) and 100 (lower traces) single trials for the jitter values of 

10 (row A), 20 (raw B) and 50 (raw C) ms. The right column of 

the same figure shows the corresponding averaged single trial 

beat spectra (dotted line – average of 10 single trial beat spectra, 

dashed line – average of 50, solid line – average of 100). As 

expected, when the time jitter is small, averaging helps in 

revealing the periodic component (compare traces of averages 

in Fig. 6, A, left column, with a single trial shown in Fig. 5, C, 

left column). Also as expected, as the jitter increases, averaging 
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Fig. 5. Example of a signal (C, left column) with random component (B, 

left column) that has frequency contents similar to that of the periodically 

repeating piece (A). Right column shows the beat spectra of the periodic 

and random components (A and B, correspondingly) and the signal itself 

(C), calculated using the power spectrum. 
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become increasingly ineffective, failing to emphasize the 

periodic component. When the jitter is 50 ms (100%), 

increasing the number of averaged single trials does not seem to 

play any role – the periodic component is essentially 

untraceable in all three traces in Fig. 6, C (left column). 

 
For the beat spectrum, however, increasing the number of 

averaged single trial beat spectra improves the quality of the 

average for all jitter values: the noisy peaks, present on the 

average of 10 single trials (Fig. 6, right column, dotted lines), 

disappear as the number of averaged single trial beat spectra 

increases (dashed and solid lines – 50 and 100 single trials, 

correspondingly). Even in the case of 100% jitter, the averaged 

across 50 and 100 single trials beat spectrum shows clear 

(though wider) and easily distinguishable peaks at 250, 500 and 

750 ms time lags. 

B. Processing of real MEG data (listening to a musical 

stimulus) 

In our earlier study [4] the musical stimulus (a part of Frantz 

Liszt’s Etudes d’execution transcendante d’apre`s Paganini, 

S.141-No. 5) of entire duration of 10 s was separated into four 

segments, for which the beat spectra were calculated and 

analyzed. The MEG signal from 20 presentations of the piece 

was averaged and the tomographic solution was extracted for 

each timeslice of the average data using the CURRY 4.5 source 

localization software (Philips Res. Lab.). Regions of interest 

(ROIs) were then defined and treated in exactly the same way as 

the music score. The correlation of the beat spectra of the music 

score and from each ROI were the measures representing how 

well the brain area corresponding to each ROI tracked the 

music.  

There were four major differences between the present and 

earlier study. First, the tomographic analysis was done using 

magnetic field tomography (MFT) [7, 8] allowing maximum use 

of the information in the signals in each timeslice of each single 

trial [2]. Second, the beat spectrum of the entire motif was 

calculated. The beat spectrum (Fig. 7, C) computed after the 

amplitude modulation (AM) component was extracted (Fig. 7, 

A) reveals the most consistently and rhythmically repeating 

fragments of the motif – the note triads. Note that the notes 

themselves are not that periodic, since their duration varies 

inside each triad (Fig. 7, B). 

 
The third departure from the earlier study was the single trial 

tomographic analysis that provided the spatiotemporal changes 

in activity across the brain for each single trial at millisecond 

time resolutions. The fourth and final change from the previous 

study was the computation of the rhythmogram and beat spectra 

for each voxel (of each single trial) in the brain. The correlation 

between the beat spectra of the music score and the brain 

activations from each voxel produces time-dependent 

tomographic maps describing the brain response to the music 

score in each single trial and at different timescales (depending 

on what parameter choices were made for the corresponding 
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Fig. 7. Beat spectrum of musical stimulus A. The envelope (amplitude 

modulation) of the music score (the stimulus). B. A fragment of the music 

score envelope with highlighted consecutive triads of notes. The duration 

of each triad is approximately 600 ms throughout entire music score 

(except the very first and two last triads, which are a little longer, about 

700 ms). C. The beat spectrum of the entire music score envelope (A) 

calculated using the window size 200 ms. Vertical lines show that peaks 

of the beat spectrum appear at time lags that are multiples of 600 ms – the 

duration of triads in the music score. 
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Fig. 6. Results of averaging of the signal and beat spectrum when there is 

a temporal jitter in the period of the periodic component. A, B, C : jitter of 

10, 20, and 50 ms, correspondingly. In the Signal column: upper trace in 

each plot - average of 10 single trials, middle trace – average of 50 single 

trials, bottom trace – average of 100 single trials. The arrows show the 

centers of the repeating piece of the periodic component as if there would 

be no jitter in time. In the Beat spectrum column: dotted line – average of 

10 single trials, dashed line – average of 50 single trials, solid line – 

average of 100 single trials. Vertical dashed lines show the time lags 

corresponding to the period of the repeating piece of the periodic 

component as if there would be no jitter in time. 
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rhythmogram).  

One of the key results of the new analysis is displayed in Fig. 

8. The figure shows an area in the fusiform gyrus that generates 

activity with beat spectra sharing the same features as the music 

score for each of the five subjects studied. The Talairach 

coordinates (TC) [9] for the centre of this area are: x=-25, 

y=-59, z=-9. These TC coordinates are remarkably close to the 

TC for the area reported by many people to be sensitive to face 

stimuli. To the best of our knowledge this is the first English 

report of activity close to what has been called the fusiform face 

area (FFA), in the analysis of music. The result has only been 

reported before in a Greek essay comparing the neuronal 

processing involved in the analysis of images and music [10]. 

 
Our results show that when we listen to music, the changes in 

activity in one of the key brain areas related to processing of 

complex visual stimuli reflect the repeated patterns in the music 

score. A mundane explanation of this observation might be that 

the emphasis in the auditory modality is reflected by an 

inhibition of activity in this primarily visual area; this 

explanation however fails to explain why only this specific and 

highly specialized area behaves in this way.  A more 

parsimonious interpretation will be that the first analysis of the 

auditory input (in the auditory cortex) produces a frequency 

map which is then analyzed as a complex pattern by the same 

area that analyzes complex visual patterns. This line of 

reasoning would then suggest that a complex and structured 

auditory stimulus, like music, should in some way be perceived 

as similar to an image. Why then there is no trace of visual 

perception when we listen to music? This may be because recent 

evolutionary pressure put the emphasis on language competence 

thus deemphasizing visual aspects of perception that music 

might evoke. What seems to be important for language is the 

accurate parsing of words to extract their meaning rather than 

the “shaping” of the linguistic material. Dyslexic children have 

difficulties with timing, as is evidenced by the correlation 

between spelling ability and the skill of tapping out the rhythm 

of a song [11]. Interestingly some dyslexic musicians are forced 

by their learning difficulties to “focus on music beyond the 

notes”; they report seeing “partterns and shapes in music” that 

others do not perceive [12]. Rhythm skills and learning skills 

requiring rapid processing of novel stimuli (e.g. mirror reading) 

are associated more with dorsal stream activity and the 

cerebellum [13], so it may be the case that in normal subjects the 

role of the ventral stream (with the fusiform gyrus one of its 

important elements) is simply masked, or more effectively 

controlled, by the more dominant activity in the dorsal part. In 

dyslexics the magnocellular deficit affects more the dorsal 

parietal areas [14]. As a result the top down inhibition from the 

parietal areas to the ventral areas is weakened and thus the 

percept generated by the activation of the ventral stream areas 

we have identified in this work persists a little more. This can be 

interpreted either as a “sluggish attentional shift” or as a 

prolongation of the “cognitive integration window” [15], 

providing an explanation of the differences in perception and 

the difficulties encountered by dyslexics. Dyslexic can see 

visual patterns in music because the persistence of the percept is 

long enough to break through to consciousness as a visual image 

[12]. Dyslexics however will have difficulties with rapid 

sequences of stimuli when the persistence of the percept of one 

stimulus interferes with the next, leading to the well-known 

deficits of dyslexics in processing linguistic material. 

IV. CONCLUSION AND OUTLOOK 

Our results highlight the limitations of studies using highly 

artificial stimuli in one sensory modality. Concepts derived 

from experiments using only such stimuli may reflect more the 

limited exploration allowed by these stimuli rather than the true 

nature of brain function. There is a general need for 

experimental designs with ecological stimuli and robust and 

powerful ways of analyzing the resulting data, like the ones we 

used here. There is also a more pressing need for methods to 

monitor brain function in cases where subjects cannot report 

what they perceived. An important example is the monitoring of 

brain function of infants and young children. Infants and young 

children cannot follow detailed instructions, they cannot control 

their movements and they cannot direct their attention for a long 

time to ecologically irrelevant simple stimuli; they do 

nevertheless respond well to natural stimuli in their 

environment, including human voice and music. The 

methodology proposed in this article has the potential to 

monitor brain activity when brain function falters and fails to 

extract the meaning from visual or auditory cues. The 

combination of these two capabilities may provide powerful 

new tools for identifying problems like developmental dyslexia 

in infancy or early childhood. The successful development of 

such tools will provide the opportunity for intervention much 

earlier when special training can be most effective. 

 
 

Fig. 8. To obtain this image the overlap between beat spectrum of the 

music score and the beat spectrum for the activity in each point in the 

brain was computed, separately for each of five subjects. The results were 

transformed to a common reference brain and the areas showing 

statistically significant overlap across all subjects identified. The 

contours delineate the brain area with common high overlap between the 

music and brain beat spectra after back transformation to the MRI of one 

subject, so that the contour is shown together with the background 

anatomy. In addition to a small region of the cerebellum the main 

activation is in the fusiform gyrus. 
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