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Do we need to consider non-linear information flow in corticomuscular interaction?
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The cortex is a mosaic of patches, each with its own cytoarchi-
tectonic and receptor signatures (Zilles et al., 2002). These patches
and the sub-cortical areas and nuclei are expected to contribute
differentially to specific functions, and evidence for this is already
accumulating (Eickhoff et al., 2006). It is however obvious that the
operations within each patch cannot depend only on the internal
organization. The connectivity between these patches must also
play a role. No matter how many complex and refined operations
take place within an area, they cannot be performed without input
from other areas and the output of these “computations” must be
communicated to other areas. These considerations lead naturally
to a description of the brain in terms of a network. At the most ba-
sic level the description can be thought of as a graph with cytoar-
chitectonic areas defining the nodes and the white matter
pathways connecting these areas describing the edges between
them (Young, 1992).

Over the last few decades, neuroimaging methods have yielded
glimpses of the way the brain works. First, Positron Emission
Tomography (PET) and more recently functional Magnetic Reso-
nance Imaging (fMRI) have provided maps reflecting changes in
neural activity. These maps are relatively sluggish because they
are indirectly related to neuronal function through the relatively
slow hemodynamic changes. More recently, improvements in
source estimation methods for EEG and MEG provided direct esti-
mates of local changes in brain activity (Babiloni et al., 2002; loan-
nides, 2006). The initial emphasis in neuroimaging studies was
placed on identifying the nodes of the neural network through
changes in activity under a given task compared to some control
condition. This effort has been conceptually satisfying since area
specialization was supported by the relatively coarse cytoarchitec-
tonic studies at the beginning of the century and reinforced by the
refinements of recent investigations (Zilles et al., 2002). The avail-
ability of standard maps and the development of methods to
morph one brain on another provided an extra impetus for the car-
tography of the human brain function. The determination of the
“functional” connections, i.e., effective connectivity (Friston,
1994) between these areas was the obvious next step. While the
conceptual framework for identifying the nodes of activity is well
established, the choice of method for defining the edges and for
quantifying their strengths is less obvious. To begin with, the basis
of connectivity between areas may be virtual connections between
areas mediated by intermediate nodes, e.g., the cerebellum, espe-
cially at high frequencies (Iloannides, 2007). A more practical ques-
tion is what kind of connectivity measure is appropriate for
describing the influences of neural areas on each other. The article

by Jin et al. in this volume (Jin et al., 2010), addresses in a very di-
rect way one important aspect of this choice, namely the need to
consider non-linear measures of connectivity.

Biological systems in general, and the brain in particular, are
characterized by multiple feedforward and feedback interconnec-
tions between large number of interacting areas, each with its
own threshold and non-linear response function. Although non-
linearities are therefore almost ubiquitous, many studies use linear
methods because of their simplicity and easier interpretation of
the results. However, it is evidently important to be able to assess
the presence of non-linear interactions and, in the context of
understanding the underlying mechanisms, to be able to deter-
mine the direction of these interactions in a reliable manner as
well.

Correlation and coherence analysis, which quantifies the
strength of linear relation between two signals in the frequency
domain, have been extensively used to assess functional connectiv-
ity in a linear context, whereas - in a non-linear context — non-lin-
ear correlation coefficients, phase synchronization and mutual
information have been used for the same purpose (Pereda et al.,
2005). All these measures do not provide information regarding
the direction of interaction. Therefore, several approaches to assess
the direction of interaction have been proposed, most of them rely-
ing on the general concept of Granger causality. Granger causality,
which was initially developed in the field of econometrics, states
that a time-series x Granger causes a time-series y when y can be
predicted better by using past values of x compared to when using
past values of y alone (Granger, 1969). Linear methodologies such
as directed coherence, directed transfer function and partial direc-
ted coherence have been proposed (Baccala and Sameshima, 2001;
Pereda et al., 2005); these typically fit multivariate autoregressive
models to neurophysiological (EEG, MEG or fMRI) data and obtain
descriptions in the frequency domain that are direction-sensitive.
Recently, an extension of this concept to non-linear multivariate
autoregressive models was proposed (Faes et al., 2008).

Jin et. al. tested for non-linearities in the coupling between neu-
ronal activity and muscle (corticomuscular, CM, coupling). They
introduced a novel way to decompose directed information flow into
linear and non-linear components, based on univariate and bi-vari-
ate surrogate data hypothesis testing. First, time-delayed mutual
information (TDMI) was used to obtain a measure of the directed
information flow between two time-series. Whereas mutual infor-
mation is a measure that can account for non-linear interactions, it
does not provide any information regarding the direction of these
interactions, in other words regarding the causal influence of one
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time-series on the other. TDMI provides this additional informa-
tion by obtaining the mutual information between the two
time-series, after time-lagging one of the two series at a time for
different lag values, and keeping the other fixed (loannides et al.,
2000). Since this measure is non-symmetric (unlike standard mu-
tual information), the direction of information is obtained as the
net difference between the TDMI obtained when time-shifting
the first time-series minus the TDMI obtained when lagging the
second.

In order to decompose into linear and non-linear interactions,
the authors use a modification of the method of surrogate data in
order to perform statistical hypothesis testing in two stages: first,
a standard surrogate data-set is obtained in the frequency domain
by obtaining the Fourier transform (FT) of the original time-series,
keeping the original amplitudes and randomizing the phase sepa-
rately for each of the two series. This abolishes any kind of corre-
lation between them; therefore, TDMI is obtained for both the
original and surrogate data-sets and used to determine whether
there is any (linear or non-linear) interaction. This constitutes
the first hypothesis test. When this is the case, i.e., the null hypoth-
esis of no interactions is rejected, a bi-variate surrogate data-set is
constructed in the frequency domain by keeping (again) the FT
magnitudes, but applying the same phase randomization to both
time-series. This preserves any linear correlations that may be
present in the data. TDMI is then used to perform hypothesis test-
ing on the bi-variate surrogate data-sets and determine whether
there is a non-linear component in the interaction between the
two time-series. The proposed methodology was tested in three
simulated systems and it was also used to investigate the CM inter-
action, obtaining measures of linear and non-linear interactions
between EEG and sEMG data, with promising results.

Whereas these two individual approaches have been used be-
fore, their combination presents an important contribution in or-
der to assess directed information flow in neurophysiological
data and decompose it in its linear and non-linear components in
an intuitive and relatively simple manner. Specifically, TDMI and
other directed information measures have been used to assess
effective connectivity, e.g., in (loannides et al., 2000; Hinrichs
et al., 2006), whereas the bi-variate surrogate data approach was
proposed in Prichard and Theiler (1994). The significance of the
work of Jin et al. relies in the direct demonstration of non-lineari-
ties using a data-driven approach with the minimum of prior
assumptions. The choice of CM interaction also allowed the
authors to make the computations directly with EEG and EMG re-
cords. This choice (rather than studying area-to-area interaction)
avoids dealing with the inverse problem directly, thus removing
a rather independent layer of complexity. It is of course now
important to carry out a similar analysis for time-series represent-
ing activity in circumscribed brain areas and thus build up the
underlying neural networks. The full potential of the proposed ap-
proach, as well as possible extensions to multivariate problems, re-
main to be seen in future studies.

Finally, this approach will hopefully help to clarify some issues
with the application and utility of non-linear measures in general.
For example, in the field of epileptic seizure prediction, which is
mentioned by the authors, it remains to be proven whether non-
linear measures indeed perform better than linear measures,

despite the fact that EEG signals may exhibit non-linear character-
istics (Mormann et al.,, 2007), and the initial optimistic results
(Martinerie et al., 1998). The reason for this is that non-linear mea-
sures are typically affected more in the presence of noise and/or re-
sult in the use of more free parameters, which often leads to
overfitting to a specific data-set and limits their generalization
capability.
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