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Recent studies show that anatomical and functional brain

networks exhibit similar small-world properties. However, the

networks that are compared often differ in what the nodes

represent (e.g. sensors or brain areas), what kind of

connectivity is measured, and what temporal and spatial scales

are probed. Here, I review studies of large-scale connectivity

and recent results from a variety of real-time recording

techniques, which together suggest that an adequate

description of brain organization requires a hierarchy of

networks rather than the single, binary networks that are

currently in vogue. Pattern analysis methods now offer a

principled way for constructing such network hierarchies. As

shown at the end of this review, a correspondence principle can

be formulated to guide the interpretation across network levels

and to relate nodes to well defined anatomical entities.
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Introduction
Recent research in systems neuroscience has emphasized

large-scale properties of the brain, establishing principles

of its anatomical [1,2] and functional [3,4] organization.

The study of complex networks has also matured over the

past few years, thanks to well formulated concepts from

graph theory and statistical physics [5,6], promoting appli-

cations in diverse fields, including neuroscience. In the

early days of neuroimaging, Friston emphasized the need

to distinguish between functional and effective connec-

tivity [7]. ‘Functional connectivity’ refers to arbitrary

relationships that might exist between the activations

of distinct and often well separated neuronal populations,

without any reference to physical connections or an

underlying causal model. By contrast, ‘effective connec-

tivity’ refers to causal effects that one neuronal popu-

lation exerts on another, and it is based on an underlying

model of the way the different neuronal populations are
www.sciencedirect.com
physically connected. The distinction between functional

and effective connectivity has proven useful across

diverse methodologies, such as positron emission tom-

ography (PET) and functional magnetic resonance ima-

ging (fMRI), and electrophysiological recordings taken

directly from multiple brain areas.

This review summarizes recent studies of functional brain

connectivity, highlighting neuroimaging studies that use

graph-theory-based tools for describing large-scale brain

networks. Network models are attractive tools for study-

ing brain organization: they provide a common framework

for describing the connectivity of distinct brain areas at

the level of anatomy and function, drawing from diverse

data and measures of connectivity. Apparently, these

large-scale networks reveal a common topology for ana-

tomical and functional brain networks. I discuss these

results in the light of recent results from multi-electrode

recordings and transcranial magnetic stimulation (TMS),

and data from functional connectivity analysis conducted

in my own laboratory using magnetoencephalography

(MEG). Finally, I propose a generalized network scheme

that is more suitable than conventional binary networks

for describing anatomical and functional connectivity

data.

Graphs and their topology
Connectivity implies a network that consists of nodes, in

which some form of processing takes place, and links

between the nodes, which enable interactions and

exchange of information. Graph theory is a branch of

mathematics that describes such networks. This section

provides some key definitions from graph theory to facili-

tate later discussion; knowledgeable readers can skip to

the next section. More detailed descriptions of the under-

lying principles and ideas can be found in recent reviews

of applications of graph theory to brain connectivity

[8�,9].

A graph consists of a set of elements, called vertices or

nodes, and a list of pairs of these elements. Graphs are

defined as directed graphs (digraphs) or undirected

graphs (graphs) according to whether their interconnec-

tions have directionality. The interconnections are given

as a list of ordered or unordered pairs of their nodes, called

arcs and edges, respectively. A ‘subgraph’ is a graph that

contains a subset of the nodes and edges of the original

graph.

The ‘underlying graph’ of a digraph is obtained by

replacing each arc by an undirected edge. The arcs or

edges can be binary (i.e. one when present and zero when
Current Opinion in Neurobiology 2007, 17:161–170
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absent) or they can carry a signed or an unsigned weight.

The weight of an edge can stand for measures such as

physical distance, the strength of connection, or the

timing of a connection between two nodes. The ‘total

weight’ of a graph is defined as the sum of the weights of

its edges. Real-world systems usually correspond to

weighted graphs. For networks that have nodes in

three-dimensional space and edge weights that represent

the physical distance between pairs of nodes, one can

define ‘wiring cost’ as the total weight of the graph. Binary

undirected graphs are the easiest to analyze; a weighted

graph can be reduced to a binary graph by applying a

threshold. Hereafter, I refer to binary undirected graphs,

unless otherwise stated.

A path between two vertices, i and j, is a succession of

distinct edges. In the definition of edges that make up this

path, vertices i and j appear only once (on the first and last

edge), and every other vertex appears twice (once as the

end of one edge and again as the beginning of the next). A

cycle is a path that connects a node to itself — that is, a

path with i = j. A graph is said to be ‘connected’ if a path

exists between each and every pair of vertices, and

‘disconnected’ otherwise. The length k of a path equals

the number of its edges.

The distance dij between two nodes i and j is the length of

the shortest path between these two nodes. The distance

matrix D of a graph has as elements the distances dij.

Entries that correspond to disconnected pairs of nodes

take on values of infinity or are assigned a very large

number (for computational purposes). The characteristic

length of a graph L is the average value of the distances dij,

excluding artificially large values that describe non-

existent edges. A measure of local connectivity is pro-

vided by the ‘clustering coefficient’ of a node. Consider a

node i and the set of nodes just one edge away, its

immediate neighbors: the clustering coefficient of node

i, Ci, is defined as the ratio of the number of edges of

the immediate neighbors of node i divided by the possible

maximum number of such edges. The global clustering

coefficient C of the graph is obtained by averaging Ci over

all the nodes of the graph. Graphs that have the same

number of vertices and edges can have different topol-

ogies depending on how the edges are organized. Surpris-

ingly, similar key properties — short characteristic length

and relatively high clustering — can be seen in two

different types of network: the ‘random network’ and

the ‘small-world network’ [5].

A random network is obtained by randomly connecting

pairs of nodes. Because edges of different physical length

are equally probable, the wiring cost of these networks

can be considerably high. A small-world network has

many edges that connect nearby vertices and only a

few edges that connect distant vertices. Most nodes

connect to a few edges but a small number, the ‘hubs’,
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connect to considerably more edges. The long-range

connections are too few to have an impact on the wiring

cost, but there are enough of them for there to be short

distances between any two nodes. Small-world networks

can therefore achieve high connectivity, similar to that of

random networks of the same number of nodes and edges

but at much lower wiring cost.

A connected graph that has no cycles is called a tree. A

‘spanning tree’ of a graph G is a ‘tree subgraph’ of G that

connects all of its nodes. The minimum spanning tree

(MST) of a (weighted) graph is the one that has the

minimum total weight. Graph theoretical methods such

as MSTs, multidimensional scaling and similar methods

are often referred to as ‘pattern analysis’.

Graph theoretical tools and other methods
for studying brain connectivity
Modern neuroimaging methods provide descriptions of

activity in a circumscribed brain area in the form of time

series. A network can be constructed by assigning a node

for each brain area, and measures of the relatedness in

activity can be computed from pairs of simultaneously

recorded time series. If such measures of functional con-

nectivity are available from all possible pairs in a group of n
time series, then these can be represented by an n � n
matrix using a corresponding weighted graph. A simpler

network can then be constructed by ‘pruning’ and ‘binar-

izing’ the graph — that is, admitting only edges above a

certain threshold. Sporns and colleagues have studied in

some detail how properties of complex networks relate to

the organization, development and function of complex

brain networks. They have also considered the relationship

between the structural substrate of neuroanatomy and the

more dynamic functional and effective connectivity, and

pointed out how network analysis offers a way forward [9].

Recent studies have demonstrated that many natural

networks, including anatomical and binarized functional

networks of brain connectivity, have a small-world top-

ology: dense local connections and a few long-range

connections. In addition to low wiring cost, small-world

topology is well suited both to segregation of processing

in specialized areas (thanks to its high local connectivity)

and to efficient integration across distributed nodes

(thanks to its short characteristic length) [10]. Multivari-

ate methods offer an alternative way of identifying net-

works, or simply reducing the dimensionality of the data.

They use the spatiotemporal information of the entire

dataset to extract patterns that vary independently from

each other. Among the many methods proposed recently,

independent component analysis (ICA) has become pop-

ular for data from both electroencephalography (EEG)

[11] and fMRI [12].

Nikolaos Laskaris and I have adapted pattern analysis

techniques to identify structure in single-trial responses
www.sciencedirect.com
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by analyzing finite segments of time series (rather than

single time points) [13]. These were later combined with

nonlinear analysis [14] to make fuller use of the timing

information in single-trial regional brain activations. My

colleagues and I have applied pattern analysis methods to

study variability in single trial responses to the same

stimulus. In one study, single trials were ordered in an

MST according to responses to median nerve stimulation

in the secondary somatosensory area. Further analysis

showed that the connectivity between primary and sec-

ondary somatosensory cortices was very different for well-

separated clusters of homogeneous single trials (located at

the antipodes of the MST) [15]. In another study, a data-

driven spatial filter was used to extract the single-trial

responses to pattern-onset visual stimuli. Pattern analysis

of the single trial responses for the dominant dipolar

pattern of the MEG signal at 70 ms demonstrated that

the polymorphic response to the simple visual stimulus

was generated by a coupling of polymodal areas and

cooperative activity in striate and extrastriate areas.

Although single trials were clustered using pattern defi-

nition that was typically only 20–40 ms long, the coher-

ence in the single trial responses within some clusters

survived much longer, usually showing up as 2–3 full

periods of an alpha wave beginning well before stimulus

onset [16].

The aforementioned data-driven approaches deal only

with functional connectivity. These methods should be

distinguished from model-driven methods [17] that deal

with effective connectivity, in which data fitting is used to

select one from among several hypothesized models.

Measures of functional connectivity
Advances in multi-electrode recording techniques [18] and

two-photon optical imaging [19] have enabled the record-

ing of large populations of neurons, simultaneously resol-

ving the activity of each one in each trial. It therefore

becomes possible to explore how the activity of each

neuron correlates to the activity of other neurons as a single

stimulus is processed or a specific response is prepared [20].

Relevant results can be summarized as follows: intracranial

recordings have shown that the firing of neurons can be

very precise [21] and synchronous across many cells [22].

Recent two-photon microscopy imaging of fairly large

neuronal populations has demonstrated precise spatial

organization [19] and recurrence of sequences in active

neurons [23].

Large-scale organization of brain function has been inves-

tigated with fMRI using both network analysis and multi-

variate feature-extraction methods. Graph theoretical

analysis of fMRI data has revealed small-world topology

[24�] that has similar clustering patterns to that seen in

anatomical connectivity [25]. Damoiseaux and colleagues

[26] used a variant of ICA to identify independent and

across-subject patterns of activations in the resting fMRI
www.sciencedirect.com
data of ten subjects. They identified ten such patterns,

each presumably representing well interconnected areas;

these included motor and sensory function, memory,

executive function and the so-called default-mode net-

work [27].

Increases in the number of sensors, along with the advent

of digital technology, have established EEG and especi-

ally MEG as the methods of choice for non-invasive study

of brain dynamics [11,28]. These methods have been

used with averaged data [29] or long time series (from

many seconds to minutes of continuous MEG data) [30]

to study interactions between a small pairs of areas. More

recently, correlations between the time series of individ-

ual EEG or MEG sensors have been used to derive

measures of ‘large-scale connectivity’ based on graph

theory [31�,32�,33]. These studies have emphasized the

topology of the functional networks at different frequen-

cies. Significantly, these studies claim to find small-world

topology in some [33] or all [31�,32�] of the frequency

ranges studied. Comparisons of such global networks for

control subjects and patients have produced mixed

results. For example, Stam and colleagues have reported

differences in functional connectivity for many frequency

bands with MEG [34]. For EEG, they have reported

changes in the beta band, described as a loss of small-

world properties in Alzheimer’s patients compared with

controls [35�]. The validity of these conclusions is pivotal

to how function relates to structure.

Measures of effective connectivity
Electrical microstimulation [36,37] and TMS [38] go

beyond correlation to demonstrate causal efficacy by

interfering with activity in a given area before or during

perception or action. Recent studies have combined

microstimulation or TMS with other techniques to map

the spread of activity following focal perturbations. The

results are particularly relevant to connectivity studies.

For example, an fMRI study [39] that followed electrical

microstimulation of the macaque area V1 not only ident-

ified the activations in the expected projection sites in

extrastriate areas but also showed that the activated area

within V1 was larger than expected, possibly reflecting

functional spread through horizontal connections. In

another study [40��], high-density EEG and TMS

reported a breakdown in effective connectivity during

sleep compared with the awake state.

Limitations of large-scale connectivity
studies with EEG and MEG: technical issues
Among the plethora of methods for studying brain con-

nectivity, only analysis of neuroimaging data using graph

theoretical tools provides a description of large-scale

connectivity. Although the application of these methods

to anatomical and fMRI data have produced networks

that have similar topology, the claim that similar topol-

ogies also exist in both the EEG and the MEG data has
Current Opinion in Neurobiology 2007, 17:161–170
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created considerable excitement [41]. In this and the next

section, I critically examine the technical and theoretical

basis of recent large-scale connectivity studies using EEG

and MEG data.

Generators in the brain produce complex EEG and MEG

maps. A focal generator produces a strong signal that

always influences nearby sensors, especially in EEG.

Tangential focal generators (i.e. generators that have

current density direction perpendicular to the line joining

the center of the head and the generator location) produce

dipolar patterns rotated by 908 to each other when using

EEG and MEG. The dipolar pattern has extrema with

opposite polarity spaced at increasing distance between

sensors as the depth of the single source increases. Com-

parisons between pairs of signals generated by the acti-

vation of a single, focal, tangential generator would

therefore always show ‘local clustering’ (i.e. high sim-

ilarity for pairs of sensors close to the peaks of signal

intensity) and ‘long-distance connections’ (i.e. highly

linked activity between remote sensors at the two

extrema of the dipolar EEG or MEG patterns). The

activation of few (or many) uncorrelated generators will

therefore produce a small-world topology in a network

computed from the raw signal topography. Signal trans-

formations of the EEG and MEG signals can be used to

reduce this ‘small-world artifact’ at the expense of low

spatial frequencies and sensitivity for deep sources

[42,43].

A second concern regarding recent EEG and MEG stu-

dies of functional connectivity is the use of raw sensor

signals across runs and subjects. For EEG, the use of

sensor-based summaries has some justification: the stron-

gest contribution to the signal is from radial sources

directly below the electrodes, which are fixed onto the

head according to the standardized 10–20 system, which

scales according to the shape and size of the head. For

MEG, referring to the same sensor information across

runs and subjects cannot be justified. First of all, the

extrema of the signal can be far away from the generators,

and their precise location depends on the head position

relative to the sensors. Using the same sensors across

different runs or repetitions of continuous recordings

(that often last for many minutes) cannot be justified

without first specifying stability of the head location

within and across runs. Even if the size of the head

and relative position could somehow be matched across

subjects, generators that correspond to the same brain

area would still produce different MEG signals on the

same sensors because of differences in the local cortical

geometry for each subject.

A third concern about recent studies of functional

connectivity is the use of connectivity measures that

ignore the fine temporal detail of the signal and the

directionality of connectivity. The aforementioned results
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from multi-electrode, microstimulation and TMS, and

MEG research from my own group [15,44], all show that

activity elicited by a stimulus arrives early in the primary

sensory cortex and spreads within a few milliseconds to

near and distant areas. In the next 100–200 ms, these areas

are reactivated many times, presumably through mutual

interactions and continuing input from the thalamus,

cerebellum and brainstem. Connectivity patterns that cor-

respond to fast interchanges of activity will not survive

hemodynamic smoothing, and might also be eliminated in

measures of similarity for which zero lag is computed over

long time periods.

Limitations of large-scale connectivity
studies using EEG and MEG: theoretical
issues
Much of the current excitement over network models is

based on their promise of a unified representation of brain

connectivity. However, ascribing all types of brain con-

nectivity to the network structures that have been theor-

etically well studied might be counterproductive. Even at

the level of anatomical connections, the use of a single

network that has undirected edges might be limited, for at

least three reasons. First, our knowledge of connectivity

in the macaque remains fragmentary at best, and is even

more limited for the human brain. Second, the network

studies reported so far are based on conspicuous connec-

tions, and largely ignore weaker connections and results

from single axon tracings that show much richer laminar

and inter-area connections [45]. Third, the anatomical

networks are not static: they change rapidly over devel-

opment, and also as a result of learning in adult life.

Whether the latter occurs through the development of

new connections or by the unmasking of silent synapses is

still under debate. The use of binary graphs can never-

theless be broadly justified for anatomical connectivity,

because at least the presence or absence of a strong

connection can be unambiguously defined.

Functional connectivity poses a more challenging pro-

blem. The first challenge is to define what nodes and

edges should really be. The sensors are obviously poor

choices for nodes. It is also difficult to define unambigu-

ously the boundaries of generators. Ignoring for the

moment the aforementioned concerns, the results of

network analysis suggest that the small-world topology

is plausible for low-frequency functional connectivity, as

derived from fMRI and electrophysiological data below

the alpha rhythm. The evidence available so far about

functional connectivity at higher frequencies is incon-

clusive, so it is prudent to consider a richer set of networks

than the ones used to describe anatomy.

Measures of fast activity
My colleagues and I have previously demonstrated

that magnetic field tomography (MFT) [46] can extract

robust tomographic estimates of brain activity from each
www.sciencedirect.com
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snapshot of minimally processed MEG data [47].

Measures of functional connectivity between areas can

then be obtained by computing the mutual information

between time-delayed segments of the resulting regional

activations [48]. Ideally, a network analysis should be

based on mutual information estimates obtained from

single-trial MFT solutions using a large number of nodes

throughout the brain, which is a computationally

demanding task. I have often used the less demanding

computation of mutual information using the MFT

solutions derived from the average MEG signal. This

analysis is particularly effective in identifying influences

in early responses and it has already demonstrated that

the connectivity pattern depends on the properties of the

stimulus [49] and where it is presented in the visual field

(Figure 1) [50]. These results show that functional con-

nectivity patterns are highly sensitive to task demands,

and they agree with the expectation that the way a brain

area responds depends on the status of other connected

areas [51].

Mutual information analysis of single-trial MFT solutions

has shown that brain function proceeds in stages, with

each stage organized around one or more hubs — that is,

brain areas that show not only high activity but also

increased connectivity with other brain areas. Transitions

between stages are often brought about by links from the

hub of one stage to the hub of the next. Figure 2 shows an

example of such transitions during the processing of facial

emotional expression in the right hemisphere of normal

subjects, and the absence of such organization in schizo-

phrenic subjects [52,53].
Figure 1

Connectivity changes depending on stimulus properties and visual field pre

information flow between V1 and V5, derived from the patterns of evoked a

Functional connectivity (mutual information estimates of linked activity) betw

either to the center (i) or to one of the four quadrants (ii) of the visual field. T

stimuli in the center or the lower quadrants of the visual field, but from the

frame for each stimulus corresponds to the color of the relevant linked-activ

www.sciencedirect.com
The recent findings from multi-electrode recordings and

two-photon imaging, as summarized in [18–23], and the

identification of high-frequency oscillatory activity in

response to strong stimulation of the median nerve [54]

provide candidate physiological activity that can generate a

measurable high-frequency MEG signal. MEG data from

experiments that used visual cues to define planning,

preparation and execution or inhibition of saccades were

analyzed in my laboratory using high sampling and wide-

band filters to include ubiquitous sharp transients in the

raw signal [55]. Tomographic analysis of the data identified

transient focal brain activations or ‘MEG spikes’; these

were widely distributed across the cortex, cerebellum and

brainstem during cue presentations and saccades, and they

showed sensitivity to task demands. The MEG spikes

were organized into feedforward and corollary discharge

sequences that could, when combined with the slower

activity-linked processing in discrete brain areas over long

periods, last hundreds of milliseconds. In new experiments

[47], MEG-spike-triggered averaging was used to demon-

strate that the MEG spikes correlate with background

alpha oscillations that couple polymodal and primary sen-

sory areas in the awake state. Figure 3 shows examples of

this coupling and how it is reduced during sleep. MEG

spikes might provide an ultra-fast communication channel

in the brain that probably works below the conscious level

but might underpin normal brain function.

Generalized networks and a
correspondence principle
Area specificity and connectivity between areas are not

static properties. Brain activity should be viewed in terms
sentation. (a) Using data from [49], the direction of dominant

ctivity in these two areas, at high contrast (i) and low contrast (ii). (b)

een V1/V2 and the face fusiform area (FFA) for face stimuli presented

he dominant first-linked activity (arrow) is from V1/V2 to the FFA for

FFA to V1/V2 for stimuli in the upper quadrants. The color of the

ity arrow. For more details, see [50].

Current Opinion in Neurobiology 2007, 17:161–170
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Figure 2

Bottom-up construction of time-dependent network activity. The single-trial activations are computed from the full magnetic field tomography

(MFT) solutions, millisecond by millisecond, in four right-hemisphere areas known to be involved in the processing of faces or facial expressions

of emotion: V1/V2, the fusiform gyrus (FG), the inferior frontal cortex (IFC) and the amygdalae (Amy). The mutual information is computed

between all possible pairs of areas, using a 40 ms window from each time series and shifting it by a 4 ms window across the time axis of each

time series in turn. The resulting two-dimensional map of linked activity has a threshold applied to it, leaving islands that describe links of finite

duration between the two areas. Superimposing the ‘thresholded’ maps for different subjects produces a mutual information map of common

links across subjects. A network (with directed edges) can then be defined by joining together all links that fall within a given latency window. The

mutual information obtained from the analysis of the data of normal subjects shows three well defined stages of processing, with hubs as

indicated here by highlighting and pale red shading: first V1/V2, then V1/V2 and the FG, and later still the IFC. To distinguish the stages, labels

and arcs are in light blue for stage 1, deep blue for stage 2 and black for stage 3. The nodes (areas) participating in the links of the displayed

stage are in red and others are in gray. Within-stage links are represented by solid arrows and links between hubs marking the transition between

stages are represented by dashed arrows. Light undirected links between nodes are included as a reminder that links between these areas

might be present but, if they exist, they are below the cut-off threshold. The numbers in the figure mark latencies from stimulus onset in

milliseconds. For nodes, the period of activation is given by the start and end latencies. For arcs, the latency of the source node initiating the

linked activity is placed at the tail and the latency of the target node at the head of the arrow. Part (a) shows the networks for each stage in

normal subjects (controls); (b) shows that the links between areas for patients whose responses to faces and facial expressions show no such

organization into stages. For more details about the timing, see [53].
of malleable processes across trials and even within a trial

across time. Adequate description of connectivity might

need a hierarchy of networks, rather than the relatively

static networks that are used to describe anatomy and

fMRI and PET data. Above the base level, virtual

nodes and edges can form networks that have very

different topologies. Networks at the same horizontal

level might correspond to different tasks [56] or simply

to different responses to identical stimuli.

In physics, the continuity of descriptions between the

classical and quantum domains demands that quantum
Current Opinion in Neurobiology 2007, 17:161–170
theory must approach classical theory in the limit of large

quantum numbers. The fulfillment of this condition

establishes a correspondence principle, namely the exist-

ence of a formal analogy between quantum and classical

theories that can guide interpretation of the results from

the new theory. I propose a similar correspondence prin-

ciple as a guide for the interpretation of connectivity

across levels. A continuity of descriptions should be

possible between levels, so that (virtual) nodes and edges

at a higher level can be related to nodes and edges at the

next lower level, and thus eventually to well-defined

anatomical areas and connections (Figure 4). For
www.sciencedirect.com
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Figure 3

Magnetoencephalography (MEG) spike-triggered averaging reveals oscillatory dependence and coupling between areas. MEG spikes were

identified in the cuneus, left dorsal V1 (Left DV1) and precuneus (Broadman’s area 7; Prcu-BA7) from continuous real-time magnetic field

tomography (MFT) estimates of activity of subjects during quiet wakefulness with eyes closed and during rapid eye movement (REM) sleep. For

this analysis, data from the experiment described in [57�] were used. Averages in arbitrary units (au) were then constructed for the activity in the

left dorsal V1 and precuneus after aligning the MEG spikes from each of the three areas. The MEG spikes are clearly identified at zero (time of

alignment) in the area of alignment in both the awake condition and REM sleep. In addition, oscillatory activity in the alpha band is identified in

left dorsal V1 and precuneus in the awake state and for all alignments. No oscillations are evident during REM sleep. The activity of the left

dorsal V1 is still correlated with activity in the cuneus but not with activity in the precuneus.
example, virtual nodes at a higher level might combine

areas that are anatomically distant in the cortex but that

functionally are brought together by activity in structures

such as the cerebellum [57�]. It might not always be

possible to find such correspondences, either because

of the underlying complexity or because current knowl-

edge is inadequate.

The pattern analysis methods that Nikolaos Laskaris and

I have described previously [13,14] can be used to guide

construction and navigation across levels. Linked activity

can be computed between all pairs of areas and all single

trials, and used to construct the network at the base level.

This would be a very difficult network to interpret, partly

because of its complexity and especially because of the

high trial-to-trial variability of each node. The overall

organization becomes more apparent as separate net-

works are constructed above the base level, each corre-

sponding to one of the homogeneous clusters identified

by pattern analysis of the activity in one or more nodes.

My colleagues and I have used pattern analysis methods

to describe hidden regularities in the activity of nodes and
www.sciencedirect.com
to study connectivity in the auditory [58], somatosensory

[15], visual [16] and oculomotor [55,59] systems.

To use this correspondence principle, it is necessary to

aim consistently for localization accuracy that would

enable fMRI and MEG foci of activity to be matched

to anatomical areas that are well defined by distinct

architecture and receptor signatures [60]. Recent results

on MEG localization capability [44,47,61] from my team

suggest that such a program is indeed within reach, and

efforts to relate functionally delineated areas to

cytoarchitectonic maps have already been made [62].

If a precise correspondence between functionally and

anatomically defined areas could be established, it would

become possible to test whether there is an anatomical

connection that corroborates a functional connectivity

link. The first such tests would probably use group

comparisons of functional and anatomical connectivity

measures. Eventually, comparisons must be made for

individual subjects, possibly using a combination of

MEG with new tracking techniques from diffusion ten-

sor imaging [63].
Current Opinion in Neurobiology 2007, 17:161–170
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Figure 4

The organization of structure and function of the brain might require a hierarchy of levels. The network at the base of the hierarchy can be

related to anatomy and it is appropriate not only for anatomical networks but also for networks describing slow processes as measured by PET

and fMRI, and possibly relevant for networks derived from slow EEG and MEG components below the alpha rhythm. As processes at faster

scales are included, new virtual networks emerge. Virtual networks at the same level might correspond to responses to slightly different stimuli, or

even a range of responses to the same stimulus depending on the state of the brain at the time. In the example, node A in the second level of

the hierarchy emerges from the activity of nodes A1 and A2 and links between them. A similar relationship holds for node B in the second level

and nodes and connections of nodes B1, B2 and B3 at the base level. The dotted lines between levels show the emergence of similar nodes

and emphasize that a node at one level can contribute to the emergence of more than one node in the next level. The different colors in the

dotted lines between levels help trace the virtual nodes and edges across different levels. Elements of networks high in the hierarchy should be

related as much as possible to recognizable anatomical areas and connections by tracing their origin back to the base level of the hierarchy.
Conclusions
Recent advances mean that brain connectivity can be

studied in detail using diverse methods. Some provide

precise measures of activity of single neurons or popu-

lations of neurons, and also of how these activities corre-

late to each other. Others enable us to interfere with

processing, and hence probe causal links between activity

in a given area and function. Yet others provide us with

measures of mass activity from which large-scale net-

works can be derived. Graph theory has shown that the

small-world topology that has been demonstrated for

anatomical networks is shared by large-scale networks

derived from fMRI and PET data, and possibly from slow

electrophysiological data. In interpreting the results, it is

important to remember that in all cases, even for anatomy,

the network descriptions are only approximations of the

real systems. We suggest that a nested hierarchy of net-

works might be more suitable for capturing the rich
Current Opinion in Neurobiology 2007, 17:161–170
connectivity of the brain than is the current generation

of single binary graphs, especially for functional networks

derived from EEG and MEG data, where some early

conclusions might have to be revised.
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