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Shannon Entropy

Let X be a system under study. If we perform a measurement, 

we obtain the result that the system is in  state “I” with a 

certain probability p(I). The average  amount of information 

from such a measurement can be quantified in terms of 

Shannon entropy: 
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If we measure simultaneously two subsystems X1 and X2 

then the joint entropy of the combined system equals
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Mutual Information
Mutual Information evaluates the amount of information 

about one of the subsystems resulting from a measurement 

of the other and can be expressed in terms of entropy: 
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Information transport may lead to time-delayed effects in 

the synchronization of correlations. Such effects can easily 

be quantyfied by calculating the time-delayed MI: 
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Generalized version of the MI 

There exist a generalization of the information entropy:
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For q = 1 this equation yields the standard Shannon 

entropy. The main property of q-entropy is that with 

increasing q a higher weight is given to the largest 

components of set {p(I)}.

We may generalize the concept of mutual information:
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