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"
What a network is?

m A network is a set of single elements, systems or entities
that are interconnected

through a mathematical model that is
called “graph”

m The network concept is formalized Q

m In a graph, the vertices (or nodes) are
the single entities while the edges (or
links) are the possible connections
between them Link /

Node
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"
Network characteristics

m Network cardinality that is the number of nodes
composing the network, ranges from 0 to co

m Network edges can be directed (di-graph) or undirected
(graph), weighted or unweighted

Unweighted undirected graph Weighted directed graph
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" S
Study of Networks

m The analysis of the topological
network properties must be

addressed by the use of Béla Bollobas
objective mathematical Modern
methods Graph Theory

m Graph theory is the appropriate
tool for the extraction of
characteristic information from
any network & s

(published in 1998)
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*
Graph definition

m Given a non empty set V and a family E of subsets of V
such that, for each e€ E, 1<|¢|<2, the couple G =
(V,E) is called a graph

1

G =(V,E):
V={123, 4,5}
E ={(1.2),(1,5), (25). (3.4), (3.5), (4.5)}
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" S
Graph representation

m The easiest way to represent a graph is the adjacency
matrix A

Adjacency matrix A

O = O = O
e -
o0 O == 0O <
—_ O = —
o -0 =0

m The link between the node 7and jis represented in the
adjacency matrix by putting to "1” the element at the
row /and at the column j
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" S
Graph and Digraph adjacency matrices

01010
m Undirected graphs have 10111
always symmetric Yoo
adjacency matrices 01010

a Directed graphs have @,G)\A 5 00000
gel_'lerally asymmetric / 00000
adjacency matrices t 1100 1
01000

When using adjacency matrices it is mandatory to know
if the or'lqmal qr'aph was directed or undirected
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Weighted graph adjacency matrices

m Weighted graphs have
a real number (higher
or lower than 1)
associated to each
link. Thus, the
adjacency matrix
consists of real
numbers, indicating
the strength of the
links
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* S
Measures for unweighted graphs

m Density

m Node degree

m Node degree distribution
m Distance between nodes
m Global efficiency

m Local efficiency
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" S
Density

m The graph density K'is the ratio between the number of existing
links L and the number of all the possible links L,,,

m In a graph of V nodes the maximum number of links is N*(V-1)/2.
Then, K =L/L,,, = 2*L / N(N-1)

= (2*6) / (5*4) = 0,6

m The network density measures the level of general
connectivity of the system. When K=0, the network has
no connections; when K=1 the network is fully
connected
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" S
Node degree

m The degree of a node gis the number of links connected

to that node

m In a graph of N vertices the maximum number of links for a single

node is V-1
01010
10111
01000 —>
11001
D1010

g9(1)=2
9(2) =4
9(3) =1

m The node degree measures the centrality of a node
within the network. The higher is the node degree, the
more important is its for the whole system
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" S
Degree distribution

m The degree distribution P(g)is the ratio between the
number of nodes with degree g and the total number of

vertices
m P(g)is the probability that a vertex randomly chosen has exactly g
connections.
01010 o4
10111 0.31
01000 =) P 02
1100 1 0,11
01010 0

m The degree distribution indicates how the links arrange
among the nodes within a network
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"
Distance between nodes

m The distance d(ij) between two nodes /and jin a graph
IS given by the shortest path that connect them

m A path is a sequence of links connecting two nodes in a graph. In
general, nodes could not be linked at all, i.e. d = @

Distance matrix
e N

01010 x 1.2 1 2
1011 1 1 x 11 1
01000 | B p=[21x 22
11001 1T 1 2 x 1
01010 L2121 x

m The distance measures the level of interaction between
two elements in a network. The higher is the distance,
the lower is the interaction
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Global efficiency

m The global efficiency £, of a graph is the arithmetical
mean of the inverse ofg the distance between each pair of
nodes (Latora e Marchiori, 2001):

2 1
9 N(N-1) igjd(i,j)

4 3
x 121 2
1 x 1 1 1 N'=5
=21 x 22| By Eg=01%(1+0,5+1+0,5+1+.
T 12 x 1 +1+1+0,5+0,5+1) = 0,8
.2 1 2 1 x J

m Global efficiency measures the “efficiency” in the
communication within the network

£,=1, in a fully connected graph; £,=0, in an empty graph
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"
Local efficiency

m The local efficiency £, of a graph is the mean of the
global efficiencies of each subgraph Sof G

1 N
E| :WZ Eg (Si)
1=1

m A graph with /' nodes has / subgraphs. Each subgraph is obtained by
removing a node and by considering the remaining graph consisting of the
nodes that were connected to the removed one.

m Local efficiency measures the tendency of the network to form
clusters of elements strongly connected

De Vico Fallani - Brain Network Analysis

17



* S
Measures for unweighted di-graphs

m Density

m Node degrees

m Degree distributions

m Distance between nodes
m Global efficiency

m Local efficiency
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" S
Density (di-graph)

m The density K of a di-graph is the ration between the number
of existing links £ and the number of all the possible links £Z,,,

m In a di-graph /V nodes the maximum number of edges is
N*(N-1). Then, K =L/L,,= L/ N*(N-1)

@i}*@)

5
7

N
L
K = 7/(5*4) = 0,35

O = 0O = 0O
el S e i
oo o = 0O
oo o =0
o =0 QO O
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" S
Node degrees (di-graph)

m In a di-graph the in-degree g,, indicates the number of
links incoming into a node; the out-degree g,,,is the
number of connections outgoing from a vertex

gout:
00000 0
@ 10110 3
f 00000 0
1100 1 3
E)—' 01000 1
g.:22111

m A high /n-degree means that an element is influenced by many
other units in the system.

m A high out-degree indicates a high humber of potential targets

De Vico Fallani - Brain Network Analysis
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" S
Degree distributions (di-graph)

m In a di-graph, the in-degree distribution P(g,,) is the
ratio between the number of nodes with degree g,, and
the total number of vertices

m Equivalently, the in-degree distribution P(g,,,) is the ratio
between the number of nodes with degree g, ,,and the
total number of vertices

‘/@@ 00000 o
10110
(Df booo00 | = P
t 11001
01000
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*
Distance between nodes (di-graph)

m The distance ¢(i,j) between two nodes /and jin a di-
graph is given by the shortest path that connect them

m In general, if a directed path exists from the node /to
the node j, the contrary is not assured

Distance matrix

Ro (1) w1
REAS

O = 0O =0
- - 0000
000 =0
000 =0
o = 000
N = 8§ = X
- o 4 X g
N N X = 3
N X 8§ = 8
X = 8 N 38

De Vico Fallani - Brain Network Analysis 22



" S
Global efficiency (di-graph)

m The global efficiency £, of a graph is the arithmetical
mean of the inverse of the distance between each pair of

nodes
1 1
E: e ——
] N(N—1)i§jd(l,1)
rxoooooooo\
@ 1 x 11 2
|:>D: 0 1 X o
b_’ 112 x 1
. 2 1 2 2 x J
N=5

E,=0,05" (1+1+1+0,5+1+1+1+0,5+1+0,5+1+0,5+0,5) = 0,525
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" S
Local efficiency (di-graph)

m The local efficiency £, of a di-graph is the mean of the
global efficiencies of each directed subgraph Sof G

1 N
E| :WZ Eg (Si)
1=1

m A di-graph with &/ nodes has N subgraphs. Each subgraph is obtained by
removing a node and by considering the remaining di-graph consisting of
the nodes that were connected (either in or out) to the removed one.

oF L @‘7@*@) 5 Q0
& Bty ¢ D
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=
Network reference models

m Regular graph m Random graph

: __.lﬁ‘it:""ai\\\ :
A AN E %
./’)'Of@‘v N/
A X ' AR

| "‘%4 V}‘«
«

A2 417/‘

De Vico Fallani - Brain Network Analysis

>
\
,,

25



" S
Regular graph

m The reqular graph is the simplest way to conceive a
graph

m |n the regular graph each node is connected to its M neighbors,
leading to a lattice structure

N =20
M=6->L=60
K=2%60/20*"19 = 0,316
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" S
Reqgular graph features

m Degree

12

10 A

123456 7 8 91011121314151617181920

N

m Global efficiency

0,59

]

m Degree distribution

al

1

0,8

0,6

0,4 -

0,2

0

m Local efficiency

0,78

-
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" S
Random graph

m The random graph was proposed firstly by Erdos e Renyi
(1959), as an alternative model to the regular graph

m In the random graph, two nodes are connected with a fixed
probability p

G ‘f“‘ﬁﬁ‘i“‘x .
Y‘{r}*“@@ib !
AR\ R

. y

o\
A \
\‘gi"jﬁa,ﬁi&!._!j‘; 7
A
N =20 i " i i
p=K=0,316
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Random graph features

m Degree

123456 7 8 91011121314151617181920

m Global efficiency
0,64

De Vico Fallani -

m Degree distribution

1
I Poisson distribution
0,6 / ----------------------------------------
117 R R — s —
R I
N TN N ST
1 2 3 4 5 6 7 8 9 10 11 12 13

m Local efficiency

=
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"
Conclusions (Part I)

In the reqgular graph all the nodes have the same
degree, while in the random graph the degree
distribution tends to follow a “poissonian” law ( N = «~ )

In the regular graph the nodes tend to form “distant”
clusters (high local efficiency), while in the random
graphs all the nodes are indifferently “close” (high global
efficiency)

Regular and random models have opposite features, but
they do not arrive to point out the brain networks
properties, which in general exhibit more complex
characteristics
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Complex brain

networks

Part Il
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"
What a complex network is?

m A complex network is a network with a non trivial

topological structure (i.e. their features differ either from
regular and random graphs)

m Natural systems exhibit complex features related to the
link organization within the network.

1§ %

* degree dist.
* clustering
* assortativity
e comunity

Lattice « hierarchical struct. Random
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" S
Biological networks

m Proteomics
Graph nodes represent proteins
Links represent the chemical interactions

m Epidemiology
Graph nodes represent persons
Links, the contagions

m Neuroscience
Graph nodes represent brain regions

Links, the anatomical or functional
connections
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"

Complex network models

m Those biological real networks have features non
completely regular or random

m Do exist other models that can exhibit the same real
network topological properties?

“Small-world" graph "Scale-free” graph
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" S
Small-world graphs

m 1998, first work published on Nature
Collective dynamics of 'small-world' networks, Watts e Strogatz

Regular Small-world Random

Increasing randomness

The probability p to reconnect the links randomly leads to an
intermediate model between a completely regular graph (p=0) and a
completely random graph (p=1)

De Vico Fallani - Brain Network Analysis



Small-world graphs

m The random reconnection of

a little number of links

reduces drastically | £ o) §
(~50%)the average distance .- o ;
between the nodes within the 5 g
graph o ;
The global and local efficiency 18 " l
indexes can capture this effect: Lo ;
BEAN A WA,
Eg regular < E, < Eg random :.;{j-,f-' :";**-1 ; ; - " T“- _1,, 1
'-"J.".- ‘; E‘ | J“‘E -'_.b__— ; '/l ;I?._., <
E, regular > E, >> E, random oy NV THpN
rewining ot linkg
regular " random
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"
Small-world networks

m Many real complex networks Unweighted:  Egop  Egigy ™ Fioe  Ege™
present Sma”_WOrId features Macaque 0.52 .57 070 0.35
Cat 060 0.69 083  0.67
o The mai_n_ function_ of this p_roperty O elegans 046 048 04T 012
IS to faC|I!tate the information Movie Actors 0,37 0.41 067 0.00026
(p'rgp?]'gaﬁlcé?f'\ggnén )the network WWW 028 028 0,36 0.000001
.€. Nig IC] Y Internet 0.20  0.30 0,26 0.0005

The name of such model derives
from the idea that, if a person is Milgram, Psych Today 2, 60 (1967)
one step away from each person o

they know and two steps away
from each person who is known

by one of the people they know, \ \

then everyone is at most six %ﬁr’"

steps away from any other AL TP L

person on Earth (6 degree of s ﬂ/

Sepa/"aﬂon) De Vico Fallani - Brain Network Analysis




" S
Scale-free graphs

m 1999, first work published on Science:
Emergence of scaling in random networks, Barabasi e Albert

S e S SN

A

* The scale-free model considers a growing factor of the network itself

* For each added node, the probability that it could be connected to the
vertex /is proportional to the degree of /
Pi = 0i Z g j
j
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" S
Scale-free graphs

m In scale-free networks there are a lot of nodes with few
links and very few vertices with a lot of connections

Random Scale-free The degree-distribution can detect
P8 . ’9\ o this structural property. For these
/e A networks the distribution follows a
J’*&fﬁfif Q“\ . ?’ﬂ/ ; power law
@ | ‘¥” *:
/@
“?‘S;gi o b b F’_(g_)_ _=g_y’2 <7 __<3
' g ;: ':4 - wujr wly |“|:Ta
— f,I :L 0_9 e
9 s > ::lﬂ ‘.'." A few hubs wit
o f 1 8) E . larpe r:|rn?hrr_-sr|'1llnkw HUbS
% - g Ve
'} g S /
k= E =
; ~|r TPy z koA ey 1 i _:_ - _1_:-!'&; .
g |Og(g) Number of links (k) |
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= B
Scale-free networks

s Beside small-world Actors WWWw Power grid
features, real complex B| “} .y C
networks can also show .. o, SN
scale-free attributes & e ‘ "

10° b \‘.\; | 10° “;\
10.610" 10-310" 10 10" 10° TO-41({ 10 -

m Scale-free networks (SF) are
very resistant to random node 12— . . .
damage (failures), but very - ROSF e .
vulnerable to intentional attacks 3'°f < Attack o0 ]

(attacks).

m Random networks present a
medium homogeneous defense
against both the type of
damages' 51.{]{] | D.[I]E | {].tICM

Frazione di nodi rimossi
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* S
Considerations on complex networks

m Scale-free (SF) and small-world (SW) models reflect
properly the attributes of the real complex networks,
independently of the nature of the connectivity system

m The theoretical graph measures (degree, distribution,
efficiency) can classify and recognize opportunely such
models

m These measure are adequate candidates to describe in a
concise way the topological organization within a
complex network
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= B
Brain networks

m Anatomical connectivity (static network):
physical connections between neurons or
cerebral regions

l.e. synaptic junctions, axons, etc,...

m Functional connectivity (changing
network): relationships between biological
activities of neuronal population or
cerebral areas

i.e. electrical signals, metabolic signals, etc...

Cross-correlation Phase difference  Autoregressive | ™

models

undirecred graph De é/r'ﬁr?;rﬁﬁ"?ﬂw' Y st Net%gléléég aly
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=
Processes in brain networks

m The structure (i.e. the links arrangement in a
graph) of a brain network is crucial in the
comprehension of its dynamical processes

m A small-world configuration facilitates the

information propagation in the network
Neuroscience = neuronal communication

m A scale-free configuration allows the
identification of the central elements (i.e. hubs)

of the network
Neuroscience = removal of epileptic source
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Brain functional networks

ROIs activity estimation

Raw EEG signals Hi-Res FEG
Detrending

Artifacts E‘g Filtering :>

Pre-processing

Brain Network ﬂ Functional
Analysis Connectivity

K Significant links Connectivity estimation among
Directed Graphs different ROIs

De Vico Fallani - Brain Network Analysis
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" S
Brain network analysis

1. Cortical plasticity in tetraplegic patients

2. Memory processes evaluation

3. Cortical dynamics during motor acts

De Vico Fallani - Brain Network Analysis
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" <MNEortical Plasticity in Tetraplegics

Does spinal cord injury alter the brain behaviour cortex during the attempt
of a simple motor task?

Human Brain Mapping 2007 De Vico Fallani - Brain Network Analysis
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"  «ENRESUIts= Functional Connectivity
| ._ 1 . o -- / ™

intensity

0.05

Lo T BAS_L
(13-29 Hz) ‘E}:}g’,’

(CMA_R ~CMA_L
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Average
values are
grouped by
SCI patients
(red symbols)
and control
subjects
(blue
symbols).

Black dots
represent the
distribution
of 1000
random
graphs

— Network Architecture

Scatter plot of global and local efficiency

0= 3-6 Hz scl |
a=7-12 Hz | : Control |

p= ;g'jg/_'/z e Random
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Separate z-
tests showed
that values
obtained in
the cortical
networks are
significantly
(p<0.05)
different from
those
obtained in
random
graphs

The higher local efficiency observed in the spinal cord injured population
entails a larger level of internal organization and fault tolerance.

Human Brain Mapping, 2007
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"  JENGEGrtical Plasticity in Tetraplegics

The obtained results indicate that the brain network during the attempted
movement changes its functional organization by increasing its modularity

— €19
O &l
Q. 918

L

This structural improvement suggests a sort of compensative mechanism
as a response to the local alteration in the brain after the spinal injury

Human Brain Mapping 2007 De Vico Fallani - Brain Network Analysis



" <VEmory processes in Neuromarketing

The events we experience in the course of our lives fall into general categories:

* Those we remember * Those we do not

Can we predict those events that are likely to initiate
the later formation of a memory trace?

Clinical Neurophysiology 2008 De Vico Fallani - Brain Network Analysis
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" Experimental Design

-E - - | 2, '
.A..Ilfe_llke_exgerlment 3 — Jo e

e Documentary
(~40 min)

e —

Each commercial break
consists of six different spots

Clinical ) lzuroonysiology, 2008



s Viethods — Spot Classification

Film showing Memory test <)
A .
- R for commercials (/»
(Retrieval)

9 10 11 12 13 14 15

EEG recording during
video commercials
(Encoding)

Remembered J -“

Classification based Commercials (RMB) 4
on behavioural

measures of memory Forgotten
Commercials (FRG) ; Xi
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"  «ENRESUlts'=Functional Connectivity

(7_R (7L

ERG
/
>
x -' .
v Alpha frequency band L Qb
42 (EEG oscillations between 8 and 12 Hz)

Clinical Neur'ophysiology 2008 De Vico Fallani - Brain Network Analysis
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" SNRESUlts — Network Architecture

* Distance was inversely proportional to the link weight : d;=1/w;
o Efficiency indexes were scaled by the mean value from 100 random graphs
* ANOVA statistics was performed with a test-level equals to 0.05

Global Efficiency Local Efficiency

1 T T 3 T \ \
- ~=-FRG ; ~=-FRG

-=-RMB : -=-RMB

0.9F T ~ T 8 250

—— —— -
- - —_——
- : - ———
- —_—— ———
- - -
- -

o
®
T

EL-s/EL-r

=)
~
T

-
-
e

——
-

EG-s/EG-r
=
B
[]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
[]
1
1
i
1
b
1
[]
i I
¥
1
| |
o

0.6 . 1h

0.5

i i i i i i i i
0.5 Theta Alpha Beta Gamma Theta Alpha Beta Gamma

BAND BAND

In the Alpha band, the local efficiency (segregation) decreases
significantly during the watching of the commercials that will be
remembered later.
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" <VEmory processes in Neuromarketing

In the Alpha band, the significant decrease of local clustering connections during
encoding activity probably reflects the presence of attentional and semantic
processes.

These processes are known to decrease the synchronicity of the Alpha oscillations

of the EEG signals

The level of segregation in the brain network can be a
predictive index for the successful memory encoding
processes

Clinical Neur'ophysiology 2008 De Vico Fallani - Brain Network Analysis 55



"  JEEGTIEaINDYnamics During Foot Movements

e Conventional connectivity methods
(Correlation, Coherence, MVAR,...) only
give a steady functional network for a

certain time interval R N

o Typically they can give a connectivity
pattern every 1-2 consecutive seconds

e However, many cerebral dynamics can
occur at a time scale of milliseconds and
so particular transient relationships can
remain hidden . ,

* Recently, some adaptive methods have Jth ey o st Sy b
been proposed to capture the transient i B i oy ey oz B )

pathways of information (Hesse et al., A
2003) giving a functional network in every
time sample

Neuroinformatics, 2008 De Vico Fallani - Brain Network Analysis
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" JEEGrticalrDynamics Durlng Foot Movements

Subjects

- 5 Healthy subjects

Jask

- Foot Movement 61 EEG channels

cap

200 self-paced trials
every 8 seconds

Leg EMG triggered
the foot movement

Period of Interest

_ . ] 1
- Preparation and Execution s onset s

Preparation - Execution

Neuroinformatics, 2008 De Vico Fallani - Brain Network Analysis 57



Functional Connectivity

Alpha (7-12 Hz)

Time (S)

Neuroinformatics. 2008 De Vico Fallani - Brain Network Analysis 58



" <EREstsEime=Varying Network Architecture

. SAPIENZA
c a2 UMIVERSITA D RCMA

R T T LT ST SR S

Cortical network

Neuroinformatics. 2008 De Vico Fallani - Brain Network Analysis
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