& SAPIENZA <% FONDAZIONE SANTA LUCIA
o [ NN\ [ETITUTO DI FICOVERO E CURA A CARATTERE SCIENTIFICO

b 1‘?\ § bepeitade o) pilieen naaieas e @ dF alla speciilissskme per s cidilingione roermealiek

Basis of the estimation of
connectivity: general principles and
measures of causality

Laura Astolfi

Dept. of Computer Science, Univ. of Rome “Sapienza”, Rome, ltaly
IRCCS “Fondazione Santa Lucia”, Rome, ltaly
laura.astolfi@uniroma1.it



Beyond the brain mapping: the study of cortical
connectivity

» Functional neuroimaging brain maps reveal
where the cortical activations appear during
the execution of a task

» The central question is how the areas
iInvolved in a task cooperate one to each other

» How to define the information flow between
the cortical activities?

Connectivity: Different definitions




Different definitions of connectivity

® Anatomical Connectivity = the existence of anatomical links
allowing the information flow from a cerebral district to another
one.

® Effective Connectivity = the simplest brain circuit that would
produce the same temporal relationship as observed
experimentally between cortical sites

* Functional Connectivity = the existence of temporal correlation
between the activity recorded in different cerebral sites

To estimate connectivity we need an operative mathematical
— definition



Definition of causality in the statistical sense

—_—
Norbert Wiener (1956). First

definition of causality in a statistical
framework:

Given two simultaneously measured signals, If one
can predict the first signal better by incorporating the
past information from the second signal than using

only information from the first one, then the second
signal can be called causal to the first one (Wiener,
1956).




Granger Causality

“a —
:_-:i _ & Economist Clive Granger (Nobel Laureate in 2003),
e 1969: Mathematical formulation of Wiener’s definition

Given two time series a(t) and b(t), a(t) Is said to Granger-cause
b(t) if the insertion of a(t)’s past into an autoregressive
modelization of b(t) significantly improves prediction of b(n),
that is, If it reduces the prediction error.
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Granger causality and AR
I ——

By means of a Bivariate Autoregressive Modeling of a(t) and b(t): a(t)
IS said to Granger-cause b(t) if by inserting a(t)’s past samples in the
autoregressive modelization of b(t) this can reduce the prediction error:

a(t) - b(t) : b can be modelized as
b(n) = B,b(n-1)+...+Bb(n-N)+A,a(n-1)+A,a(n-2)+...+Aa(n-M)+n(t)

T —— MM a(t)
T e T b(Y)

n-3 n
It can be a(t) = b(t) without necessarily being b(t) - a(t)
-> DIRECTIONALITY



Autoregressive linear prediction

* An autoregressive (AR) filter can be used as a linear
predictor

SN T T T -
X[n]=-2.aln]x[n-k] oy

k=L S ke }

! ; X[ 4 ¢ Xn21 7 3&
® The prediction error is: X[Tﬁlx[T' 5) } X[T] T[”]
_e[n]=x|n]-%|n] ]

* We must determine the coefficients a[k], by minimizing the
power of the error e[n]




Bivariate autoregressive modeling

® The autoregressive prediction of y is made by including
Information about the past samples of another signal x:

)= a, [k -]+ b, kb -] e, o]

p p
y[n]: Z ayk [k]X[n B k]+ Z byx [k]y[n B k]+ eyx [n]
k=1 k=1
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Granger Causality Test =T

By comparing univariate and bivariate AR:

a,[k] and a,[k] are the model parameters,

x[n]= Zp:ax [kX[n-k]+e[n] P Is the model order
k=1 e, and e, are the uncertainties or the

P residual noises associated with the
y[n]= Zay [klyln—k]+ €y n] model. Here, the prediction error depends
only on the past values of the own signal.

)= a, [kl -]+ b, [y - K+ e, [n]

vIn= Y2 [khdn - K]+ b, [yl - K]+ e, n]

Here, the prediction error for each individual signal depends on the past
values of both signals.




Granger Causality Test =T

——
The prediction performances for both models can be assessed by the variances

of the prediction errors:

N
14

Vx\x = Var(ex) For univariate Vx\x,y =var (exy) For bivariate

Vi = var(ey) models V), =Vvar (eyx) models

where var(.) indicates variance operator, X|X_and X|X _,Y _indicate predicting
X by its past values alone and by past values of X and Y, respectively. If
Vyxy<Vxx then Y causes X in the sense of Granger causality. A measure of
Granger Causality from y to x can the be expressed as:

— VX|X
G, =In
Vx|x,y

If the past of Y does not improve the prediction of X, then V

zVX‘X =G=0
Any improvement in prediction of X by the inclusion of Y: Vi I =61

[x.y
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Advantages and limitations

of Granger Causality Test
1

* Advantages:
DIRECTIONALITY G, #G
Statistical definition

X—>Y

* [ imitations:
Defined in the time domain (in the time window we used to
identify the model) provided that the signals are stationary in
that window
True causality can only be assessed if the set of two time
series contains all possible relevant information and sources
of activities for the problem (Granger, 1980).
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Limitations of the bivariate methods

If the sources of activities for the problem are more than 2: i
Bivariate modelization of signals 1

and 2 does not recognize that the
correlation between the two signals

Is due to a common effect of 3

(which is not included in the model)

) Connectivity pattern 2
estimated by a bivariate

method 12

®:




Bivariate methods for multiple signals

-
BIVARIATE METHODS: a model for each couple of signals in a

set

X4[N]

X,[Nn]

"I  BIVARIATE
; AR




Multivariate methods

MLTIVARIATE METHODS: The connectivity pattern is obtained
by a unigue model estimated on the entire set of data and takes into
account all their interactons

X4[Nn]

X,[Nn]

»

MVAR

ol

»
»
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Multivariate methods

Correct model

@<§

Pattern obtained by a

_/

Multivariate methods, by building
a unigue model based on all the
signals, use all the information at
disposal and thus allow a better
comprehension of the relationship

between the signals
15



Multivariate Autoregressive Models (MVAR)
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Multivariate Autoregressive Models
(MVAR)

e
* Given aset of N signals: x = [xl[l] X, [1] e Xy [1]]T

* A Multivariate Autoregressive Model of order p Is:

=R ldn-K->addeln-K- - - k- re]

elnl=-aldeln-K->a oK - - -k e

= Ralksln-K-Y A kheln-K- - - aukoln-Klse
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Multivariate Autoregressive Models
(MVAR)

®* The model parameters are N-N-p:

a,fl] - ayll

a,2] - ay[2]
a]=| ¢+ oi o als v

ail[p] 1Y [p]

agll] - awll] ayl2] - awl2] aulp] - awlpl]

* And the N variances of the residuals:

o, Total number of parameters to be
estimated:N-N-p+N=N(N-p+1)

18



MVAR in the frequency domain

p ]
2 AKX (t-k) = E (1)
K(f ))?(f): E(f) Where: A, (f):gaij [k]e—jznka
AL(F) o AL
Af)=|
_ANl(f) ANN(f)_
X, (f) E, (F)
X(f)=|: E(f)=
_XN(f)_ EN(f)




MVAR in the frequency domain

® \We can write the previous equation as follows

20



Directed Transfer Function (DTF)

* DIRECTED TRANSFER FUNCTION (DTF) fromjtoiis
defined on the basis of matrix H
(Kaminski and Blinowska, 1991, 2001):

Hij (f): ‘Hij (f )(2

* Normalized DTF:

] _ ‘Hij(f)(z . N
6 (f) mZN:;\Him(sz with: >0, (1) =1

21



Directed Transfer Function (DTF)

® Since Hij (f)?(‘_ Hji (f) , We have: eij (1:)?é gji (f)

|

The value of DTF;; at a certain frequency
f, represents the existence of a
causality link directed from j to |

A,

10 20 30

22



Partial Directed Coherence (PDC)

* PARTIAL DIRECTED COHERENCE (PDC) fromjtoiis
defined on the basis of matrix A
(Baccala and Sameshima, 2001):

i (f): ‘Aij (f )‘2

* Different normalization of PDC are provided, for instance
(Astolfi et al, 2007):

(f ) - N‘Aij (f )(2
DAL (F)

m=1

N
Where: Z T, (f ) =1
n=1

23



Partial Directed Coherence (PDC)

* Also for PDC, since A, (f)= A, (f)
ﬂij(f)¢ ”ji(f)

|

The value of PDC;; at a certain frequency f,
represents the existence of a causality link
directed from jto |

24



Partial Directed Coherence (PDC) &
Directed Transfer Function (DTF)

p —_—
> AKX (t-k) = E (1) —py  OXO=ED
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Differences between DTF and PDC

* Similar results

* Due to their mathematical formulation, and to
matrix inversion:

DTF describes the sum of all influences directed
from 1 to j (direct and indirect)

PDC describes only direct influences

If no direct influence is present, DTF can still have
a significant value, while PDC does not.

Depending on the kind of information we are
Interested in, we can decide which one we need to
use.

26



Simulation study
I ——

Objectives:

To perform a comparative study of the different spectral estimators
of the connectivity, based on some specific questions:

1) Howdo DTF, PDC, and dDTF perform in the discrimination of
direct or indirect causality patterns?

2) How are the estimators influenced by different factors affecting the
EEG recordings, like the signal to noise ratio and the amount of data
available?

What is the most effective method for estimating a connectivity
model under the conditions usually encountered in standard EEG
recordings?

Astolfi et al, 2007 27



Simulation Setup

Predefined L ENGTH

Connectivity Model EES
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Simulation Results

(x4 0

Analysis of Variance:
influence of the different
levels of the SNR and
LENGTH on the estimation
for DTF and PDC.

95% confidence interval of
the mean errors computed
across the simulations.

x9
05

.7

F elative Error

008 r

0,06 ¢

004 -

0.0z -

0,00

5 ROIs connectivity model

SMNRE=1

SMRE=13 SMRE=14

SME =10

e [ TF
=il PO

1m0 27 456 60 =0

n 7 44 60 =0 n 7 45 60 =0

LEMNGTH

1m0 27 45 60 =0

B



Estimation Error
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Simulation Results

Current effect: F(19, 931)=380.20, p=0.0000
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Error on single arcs for DTF and PDC.
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Simulation Results

Values estimated by DTF,
PDC and dDTF on the
Indirect arcs 1->5 and 2->4,
and average value on the
direct arcs.
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Computational cost

® Bivariate case:
* N signals
* Order p

* N(N-1)/2 models,

* 4p parameters for each model:

* Multivariate case:

* N signals

2(N2-N)p

° orderp

N2p

32



Computational cost

N° parameters
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Bivariate and multivariate: when and
which

* Bivariate methods:
* Limitations:

* Higher computational cost
* Less precision
* Advantages:
* No limit to the number of signals
* To be used when short data segments are available

34



Bivariate and multivariate: when and
which

* Multivariate methods:
* Limitations:

* Limitation in the number of channels/signal that can
be modelized

* Advantages:
* Better estimation performances
* Allows for inserting all data sources in the model

35



Time-varying connectivity
estimation

36



Why a time-varying measure of cortical connectivity?

MV AR based methods for the connectivity estimation are able
to describe direction and strength of the interactions between
cortical areas, but their classical estimation requires the
stationarity of the signals in the time interval under
examination

» Transient pathways of information transfer remains hidden

» It’s not possible to follow the rapidly changing brain
connectivity

(- TIME-VARYING ESTIMATORS based on an N
MVAR model with time-dependent parameters
(adaptive fit, Recursive Least Squares with Forgetting
Factor, Hesse et al, 2003)

RESULT: Time-frequency distributions of
\_ Granger causality 4




Time-varying connectivity between ROIs (simulation)
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Simulation Setup
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Simulation results

DTF - PDC2
3 ROIs; 1->3 ARROW;ALPHA BAND;INTERVAL 2
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Time-varying model
Imposed on simulated
___ signals (3 cortical areas)
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Analysis of Variance: influence of the different choices of the factors C on the
adaptation speed of time-varying DTF and PDC.

ANOVA performed on the Time at settling (10% of the transition amplitude) .



Simulation results

DTF - PDC2
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Analysis of Variance: influence of the number of trials on the adaptation speed of
time-varying DTF and PDC.

ANOVA performed on the Time at settling (10% of the transition amplitude) -



Simulation results
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Applications: will be shown tomorrow
(during the hands-on part of the course)
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Non-linear Methods

® | Mutual Information:
based on information theory

tells us how much extra information one gets from one signal X by
knowing the outcomes of a second one Y

quantifies the statistical dependencies between the two variables X
and Y, with no assumption about the form of their respective
densities and implicitly their generating processes

Is asymmetric index = no direction
® Phase synchronisation

the phases of two coupled nonlinear (noisy or chaotic) oscillators
may synchronize even if their amplitudes remain uncorrelated

It’s based on the quantification of the phase locking
® Event Synchronisation

useful in case of point-like events, like the firing of a neuron or the
appearance of epileptic spikes in an EEG recording
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Non-linear Vs Linear approaches

® Nonlinear methods entail very high computational demands in
comparison to the linear ones, and may not be robust to
nonstationariness.

® Reliable estimations of the Ml often requires a large amount of
data, a constraint that is sometimes in conflict with the requisite of
stationarity in the case of experimental data.

® Nonlinear approaches should be regarded as a complement of the

linear approach that allows getting a more comprehensive picture
of the analyzed data. The information provided by multivariate
nonlinear analysis does not necessarily coincide with that of the

——— linear methods. Both approaches may assess different parts of the
Interdependence between the signals. Additionally, from the
methodological point of view, linear methods sometimes present
better properties that their nonlinear counterparts, such as
robustness against noise.
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Linear and non-linear approaches

“In consequence, a rigorous approach to the study of any neurophysiological
data set should not be biased towards nonlinear methods. Quite on the
contrary, the linear approach should be the initial choice, and it is indeed a
healthy practice to try first the traditional approaches before going to the
more complicated ones. Only if we have good reasons to think that there is
any nonlinear structure either in the data themselves or in the
interdependence between them should the nonlinear approach be adopted.
And even in this case, the best strategy would consist in using both linear
and nonlinear methods alike to be sure that we have gathered all the
Information available from the signals.” (Pereda et al, 2005)

REFERENCES:
Pereda, Quian Quiroga and Bhattacharya, 2005
David, Cosmelli and Friston, Neuroimage, 2004.
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Questions?

Contact: laura.astolfi@uniromal.it
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