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Beyond the brain mapping: the study of cortical
connectivity

Functional neuroimaging brain maps reveal Functional neuroimaging brain maps reveal 
wherewhere the cortical activations appear during the cortical activations appear during 
the execution of a taskthe execution of a task

The central question is The central question is howhow the areas the areas 
involved in a task cooperate one to each other involved in a task cooperate one to each other 

How to define the information flow  between How to define the information flow  between 
the cortical activities?the cortical activities?

Connectivity: Connectivity: Different definitions Different definitions 
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Different definitions of connectivity

• Anatomical Connectivity = the existence of anatomical links
allowing the information flow from a cerebral district to another
one. 

• Effective Connectivity = the simplest brain circuit that would 
produce the same temporal relationship as observed 
experimentally between cortical sites

• Functional Connectivity = the existence of temporal correlation
between the activity recorded in different cerebral sites

To estimate connectivity we need an operative mathematical
definition
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Definition of causality in the statistical sense

• Norbert Wiener (1956). First 
definition of causality in a statistical
framework: 

Given two simultaneously measured signals, if one 
can predict the first signal better by incorporating the 
past information from the second signal than using
only information from the first one, then the second
signal can be called causal to the first one (Wiener, 
1956).
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Granger Causality

• Economist Clive Granger (Nobel Laureate in 2003), 
1969: Mathematical formulation of Wiener’s definition

Given two time series a(t) and b(t), a(t) is said to Granger-cause 
b(t) if the insertion of a(t)’s past into an autoregressive 
modelization of b(t) significantly improves prediction of b(n), 
that is, if it reduces the prediction error.

nn--33 nn
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a(t)a(t)
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Granger causality and AR

By means of a Bivariate Autoregressive Modeling of a(t) and b(t): a(t) 
is said to Granger-cause b(t) if by inserting a(t)’s past samples in the 
autoregressive modelization of b(t) this can reduce the prediction error:

a(t) b(t) : b can be modelized as

b(n) = B1b(n-1)+…+BNb(n-N)+A1a(n-1)+A2a(n-2)+…+AMa(n-M)+n(t)

It can be a(t) b(t) without necessarily being b(t) a(t)
-> DIRECTIONALITY

n-3 n
t

a(t)

b(t)
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Autoregressive linear prediction

• An autoregressive (AR) filter can be used as a linear
predictor
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Bivariate autoregressive modeling
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• The autoregressive prediction of y is made by including
information about the past samples of another signal x:

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]∑ ∑

∑∑

= =

==

+−+−=

+−+−=

p

k

p

k
yxyxyk

p

k
xyxy

p

k
xy

neknykbknxkany

neknykbknxkanx

1 1

11



9

Granger Causality Test 

• By comparing univariate and bivariate AR:

ax[k] and ay[k] are the model parameters, 
p is the model order
ex and ey are the uncertainties or the 
residual noises associated with the 
model. Here, the prediction error depends
only on the past values of the own signal.
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Granger Causality Test
The prediction performances for both models can be assessed by the variances 
of the prediction errors:
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where var(.) indicates variance operator, X|X_ and X|X_,Y_ indicate predicting 
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Advantages and limitations
of Granger Causality Test

• Advantages:
• DIRECTIONALITY
• Statistical definition

• Limitations:
• Defined in the time domain (in the time window we used to

identify the model) provided that the signals are stationary in 
that window

• True causality can only be assessed if the set of two time 
series contains all possible relevant information and sources
of activities for the problem (Granger, 1980).

yxxy GG →→ ≠
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Limitations of the bivariate methods
If the sources of activities for the problem are more than 2:

Connectivity pattern 
estimated by a bivariate 
method

Bivariate modelization of signals 1 
and 2 does not recognize that the 
correlation between the two signals
is due to a common effect of 3 
(which is not included in the model)
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Bivariate methods for multiple signals

X1

X2

X3

X4

X5

BIVARIATEBIVARIATE
ARARx2[n]

x1[n]

X1X1

X2X2

BIVARIATE METHODS: a model for each couple of signals in a 
set
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Multivariate methods

MVARMVAR
x2[n]

x1[n]

x N[n]

X1X1

X2X2

X3X3

X4X4

X5X5

MLTIVARIATE METHODS: The connectivity pattern is obtained
by a unique model estimated on the entire set of data and takes into
account all their interactons
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3
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Multivariate methods

Correct model

Pattern obtained by a 
multivariate method

!=

Multivariate methods, by building 
a unique model based on all the 
signals, use all the information at 
disposal and thus allow a better
comprehension of the relationship
between the signals
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Multivariate Autoregressive Models (MVAR)
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Multivariate Autoregressive Models
(MVAR)

• Given a set of N signals:

• A Multivariate Autoregressive Model of order p is:
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Multivariate Autoregressive Models
(MVAR)

• The model parameters are N·N·p:

• And the N variances of the residuals:

[ ]
[ ] [ ]

[ ] [ ]
[ ]

[ ] [ ]

[ ] [ ]
[ ]

[ ] [ ]

[ ] [ ]⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

papa

papa

pa

2a2a

2a2a

2a

1a1a

1a1a

1a

NN1N

N111

NN1N

N111

NN1N

N111

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

N

2

1

ES

σ

σ

σ

Total number of parameters to be
estimated:N·N·p+N=N(N·p+1)



19

MVAR in the frequency domain
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MVAR in the frequency domain

• We can write the previous equation as follows

where H(f) is the TRANSFER MATRIX of the MVAR filter:
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Directed Transfer Function (DTF)

• DIRECTED TRANSFER FUNCTION (DTF) from j to i is
defined on the basis of matrix H 
(Kaminski and Blinowska, 1991, 2001):

• Normalized DTF:
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Directed Transfer Function (DTF)

• Since , we have: 

The value of DTFij at a certain frequency
f0 represents the existence of a 
causality link directed from j to i 

( ) ( )ff jiij θθ ≠( ) ( )fHfH jiij ≠
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Partial Directed Coherence (PDC)

• PARTIAL DIRECTED COHERENCE (PDC) from j to i is
defined on the basis of matrix A 
(Baccalà and Sameshima, 2001):

• Different normalization of PDC are provided, for instance
(Astolfi et al, 2007):

( ) ( ) 2
ijij fAf =π

( )
( )

( )∑
=

= N

1m

2
im

2
ij

ij

fA

fA
fπ ( )∑

=

=
N

1n
in 1fπWhere:



24

Partial Directed Coherence (PDC)

• Also for PDC, since

The value of PDCij at a certain frequency f0 
represents the existence of a causality link
directed from j to i 

( ) ( )ff jiij ππ ≠

( ) ( )fAfA jiij ≠
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Partial Directed Coherence (PDC) & 
Directed Transfer Function (DTF)

A(f)X(f)=E(f)

PDCij and DTFij estimate the influence 
of the region j toward the region i
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Differences between DTF and PDC

• Similar results
• Due to their mathematical formulation, and to

matrix inversion:
• DTF describes the sum of all influences directed

from i to j (direct and indirect)
• PDC describes only direct influences
• If no direct influence is present, DTF can still have

a significant value, while PDC does not.
• Depending on the kind of information we are 

interested in, we can decide which one we need to
use. 
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Simulation study

Objectives:
To perform a comparative study of the different spectral estimators 
of the connectivity, based on some specific questions:

1) How do DTF, PDC, and dDTF perform in the discrimination of 
direct or indirect causality patterns? 

2) How are the estimators influenced by different factors affecting the 
EEG recordings, like the signal to noise ratio and the amount of data 
available? 

3) What is the most effective method for estimating a connectivity 
model under the conditions usually encountered in standard EEG 
recordings?

Astolfi et al, 2007
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Simulation Setup

INDEXES 
GENERATION

TheoreticalTheoretical valuesvalues

BANDBAND

a11 a12  a13

a21 a22 a23

a31 a32 a33
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LENGTHLENGTH

SIGNAL 

GENERATION

CORTICAL 
ACTIVATIONS

X2

X3

X4 X1

a42

a43

a32

a31

a21

Predefined
Connectivity Model

50 REPETITIONS

PDCPDC

EstimatedEstimated
valuesvalues

DTFDTF

ddDTFDTF

PERFORMANCE PERFORMANCE 
INDEXESINDEXES

-
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Simulation Results

5 ROIs connectivity model

Analysis of Variance: 
influence of the different 
levels of the  SNR and 

LENGTH on the estimation 
for DTF and PDC. 

95% confidence interval of 
the mean errors computed 

across the simulations. 
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Simulation Results

Error on single Error on single arcsarcs forfor DTF and PDC.DTF and PDC.
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Indirect connectivity paths

Simulation Results

Values estimated by DTF, 
PDC and dDTF on the 

indirect arcs 1->5 and 2->4, 
and average value on the 

direct arcs.
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Computational cost

• Bivariate case:
• N signals
• Order p
• N(N-1)/2 models, 
• 4p parameters for each model:  2(N2-N)p 

• Multivariate case:
• N signals
• order p N2p
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Computational cost

p

N° parameters
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Bivariate and multivariate: when and 
which

• Bivariate methods: 
• Limitations:

• Higher computational cost
• Less precision

• Advantages:
• No limit to the number of signals
• To be used when short data segments are available
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Bivariate and multivariate: when and 
which

• Multivariate methods: 
• Limitations:

• Limitation in the number of channels/signal that can 
be modelized

• Advantages:
• Better estimation performances
• Allows for inserting all data sources in the model
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Time-varying connectivity
estimation
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Why a time-varying measure of cortical connectivity?

TIME-VARYING ESTIMATORS based on an 
MVAR model with time-dependent parameters
(adaptive fit, Recursive Least Squares with Forgetting 
Factor, Hesse et al, 2003) 

RESULT: Time-frequency distributions of 
Granger causality 

Transient pathways of information transfer remains hidden 
It’s not possible to follow the rapidly changing brain 

connectivity

MVAR based methods for the connectivity estimation are able 
to describe direction and strength of the interactions between 
cortical areas, but their classical estimation requires the 
stationarity of the signals in the time interval under 
examination
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Time-varying connectivity between ROIs (simulation)

11-->2 (>2 (estimatedestimated))

TheoreticalTheoretical--estimatedestimated

11-->2 (>2 (theoreticaltheoretical))

ImposedImposed



Time-frequency connectivity patterns
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Simulation Setup
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Simulation results

Analysis of Variance: influence of the different choices of the factors C  on the 
adaptation speed of time-varying DTF and PDC. 

ANOVA performed on the Time at settling (10% of the transition amplitude)

TimeTime--varyingvarying model model 
imposedimposed on on simulatedsimulated

signalssignals (3 (3 corticalcortical areasareas))
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Simulation results

Analysis of Variance: influence of the number of trials on the adaptation speed of 
time-varying DTF and PDC. 

ANOVA performed on the Time at settling (10% of the transition amplitude)
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Simulation results

Analysis of Variance: two-way effect of adaptation factor C and number of trials on 
the adaptation speed of time-varying DTF and PDC. 

ANOVA performed on the Time at settling (10% of the transition amplitude)
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Applications: will be shown tomorrow
(during the hands-on part of the course)
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Non-linear Methods

• Mutual Information:
• based on information theory
• tells us how much extra information one gets from one signal X by

knowing the outcomes of a second one Y
• quantifies the statistical dependencies between the two variables X 

and Y, with no assumption about the form of their respective
densities and implicitly their generating processes

• Is asymmetric index no direction
• Phase synchronisation

• the phases of two coupled nonlinear (noisy or chaotic) oscillators
may synchronize even if their amplitudes remain uncorrelated

• It’s based on the quantification of the phase locking
• Event Synchronisation

• useful in case of point-like events, like the firing of a neuron or the 
appearance of epileptic spikes in an EEG recording
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Non-linear Vs Linear approaches
• Nonlinear methods entail very high computational demands in 

comparison to the linear ones, and may not be robust to
nonstationariness.

• Reliable estimations of the MI often requires a large amount of 
data, a constraint that is sometimes in conflict with the requisite of 
stationarity in the case of experimental data.

• Nonlinear approaches should be regarded as a complement of the 
linear approach that allows getting a more comprehensive picture
of the analyzed data. The information provided by multivariate
nonlinear analysis does not necessarily coincide with that of the 
linear methods. Both approaches may assess different parts of the 
interdependence between the signals. Additionally, from the 
methodological point of view, linear methods sometimes present
better properties that their nonlinear counterparts, such as
robustness against noise.
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Linear and non-linear approaches

• “In consequence, a rigorous approach to the study of any neurophysiological
data set should not be biased towards nonlinear methods. Quite on the 
contrary, the linear approach should be the initial choice, and it is indeed a 
healthy practice to try first the traditional approaches before going to the 
more complicated ones. Only if we have good reasons to think that there is
any nonlinear structure either in the data themselves or in the 
interdependence between them should the nonlinear approach be adopted. 
And even in this case, the best strategy would consist in using both linear
and nonlinear methods alike to be sure that we have gathered all the 
information available from the signals.” (Pereda et al, 2005)

• REFERENCES:
• Pereda, Quian Quiroga and Bhattacharya, 2005
• David, Cosmelli and Friston, Neuroimage, 2004.
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Questions?

Contact: laura.astolfi@uniroma1.it
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